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Abstract

In this thesis the Minimum Ignition Energy, in a hydrogen-air system, is
studied by Direct Numerical Simulations (DNS) in a program called the
Pencil Code. The heat source used to achieve ignition is modeled by a Gaus-
sian temperature distribution. Three different geometries of the heat source
are looked upon, one with spherical geometry in three dimensions, one with
cylindrical geometry in two dimensions and the last in one dimension. The
results show that the dimensionality of the heat source has a strong impact
on ignition.

In addition, a new simpler zero dimensional simulation method is pro-
posed with the goal of replicating the results from the Pencil Code. This
method needs less calculation power, and uses ignition delay time data to-
gether with the heat equation to simulate ignition. The model has proven
itself useful since it reproduces the Pencil Code results very well.
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Chapter 1

Introduction

Knowledge and information about the characteristics of hydrogen combustion
are important in a range of applications. Hydrogen gas has many useful
properties. It is the lightest gas known and has great buoyancy effects. In
addition, it has very good flammable and explosive qualities.

The usage of hydrogen gas in Zeppelins, due to its high buoyancy ef-
fect, was well established in the earlier years. However, since the hydrogen
molecules are so small, it is a hard gas to contain and leakage can easily oc-
cur. This was probably what happened in the Hindenburg disaster, combined
with a static discharge an explosion was inevitable. For many industrial pro-
cesses where hydrogen is involved one has to use extreme caution, and safety
issues are very important. As hydrogen has gotten more and more common
as fuel in personal vehicles, the general public is forced to indirectly operate
hydrogen in their everyday life, and explosion hazard awareness is growing
ever more important.

The more that is known about the conditions which are necessary for
hydrogen gas to ignite, the easier accidents can be avoided. The developers
are then given clearer boundaries and latitudes related to design and safety
of hydrogen based products. Furthermore, it will improve the efficiency of
hydrogen as a fuel for internal combustion engines.

In this thesis, properties related to the minimum ignition energy (MIE)
in a hydrogen combustible mixture are explored. It is done so by numerical
simulations in a program called Pencil Code [1]. The main focus is laid down
in how the shape of the ignition source affects the MIE. The idea is to imitate
an ignition source by a Gaussian temperature distribution and simulate the
outcome. The shape of the Gaussian distribution is governed by its height,
the center temperature difference, and its width, the standard deviation. By
altering these parameters, the ignition results will be affected. If they are
chosen carefully, such that the distribution barely gives ignition, one can
calculate the energy necessary to obtain this distribution, which would effect
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CHAPTER 1. INTRODUCTION

in being the MIE. The Gaussian temperature distribution is

T (r) = (Tmax − T0) e−
(

r
rs0

)2

+ T0, (1.1)
where rs0 is the width and (Tmax − T0) is the height. This will be explored
in more detail later on.

In addition to vary the shape of the distribution, ignition simulations
will be performed in different dimensions and compared. This provides more
information about the heat source. By changing the dimension, one could
imagine it being equivalent to changing the geometry of the heat source.
For instance, a simulation in two dimensions shows the distribution as a
round plate, with its maximum temperature in the center. This could be
equivalent of looking at a long cylinder in three dimensions, with a cross
section corresponding to the 2D simulations. A different spacial design would
be a direct 3D simulation in the form of a sphere.

When numerical simulations are performed in 3D, it is very costly related
to computer power. In this thesis a new, less complex, simulation method
is proposed with the purpose of replicating the ignition result from the DNS
regarding the design of the heat source. In this method many simplifications
is done and only the most important physics of the simulation problem are
included. This will reduce the cost of computer power, and a balance between
accuracy and simplicity are pursued. Furthermore, it will give an insight into
the important physics which lies behind.

In addition to this introduction, the thesis consists of six chapters. Firstly
it is the theory chapter, which explains some of the properties of ignition and
the most important chain reactions in a hydrogen-oxygen system. Further-
more, it states reasons for why there exist explosion and flammability limits.
Chapter 3 will deal with the simulation methods of the Pencil Code. Here a
basic explanation of how the code works will be given and it will be shown
how our problems must be addressed in the simulation program. The next
chapter will analyse the procedure of the new, more simplified, simulation
method. The assumptions and simplifications in this method will be shown
together with how it operates to reproduce the Pencil Code results. The
simulation results of both methods will be shown by figures and presented in
the result chapter. These results will be further analysed in the discussion
chapter, before the most important findings will be stated in the conclusion
chapter.
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Chapter 2

Theory

2.1 Chain reactions
When hydrogen reacts with oxygen to form water it cannot be described by
a single reaction. Even though 2H2 + O2 → 2H2O is the overall reaction,
meaning that it explains the final products that the initial reactants will
end up as, it is not sufficient. The process involves a series of intermediate
steps which occurs by a chain process and involve many radical species.
Radicals can be atoms, molecules or ions that have free unpaired electrons
which cause them to be highly reactive. The involved radicals in a hydrogen-
oxygen system are the species H, O and OH. In addition, hydroperoxyl,
HO2, has to be included, but in comparison this radical is relatively stable.

A chain process is divided into different types of chain reactions dependent
on their various characteristics. The chain initiation steps are accountable
for creating the initial radicals which will initiate the chain process. One
possibility is when molecular hydrogen dissociates into atomic hydrogen by
the reaction

H2 +M → 2H +M (2.1)
where M denotes any third body species that are not directly involved in the
reaction. Dissociation of oxygen would also be possible, but the dissociation
energy of oxygen is higher than that of hydrogen. Reaction (2.1) is very
endothermic and is only believed to yield for high temperatures. A more
proper reaction, (2.2), which is often mentioned in the literature as the main
initiation step, provides two radicals for the system, but as mentioned HO2
is more stable than H, and will not have a major participation in initiating
further steps. This reaction is given as

H2 +O2 → HO2 +H. (2.2)

Whether the dominant reaction is (2.1) or (2.2) is not very essential. The
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CHAPTER 2. THEORY

essence lies in that the initiation step provides unstable H atoms that launch
a series of reactions.

The important steps are

H +O2 → O +OH (branching) (2.3)
O +H2 → H +OH (branching) (2.4)

H2 +OH → H2O +H (propagating) (2.5)
O +H2O → OH +OH (branching). (2.6)

In this reaction system there are two types of reactions called chain prop-
agation and chain branching. The difference between the two are seen in that
the branching steps produce two or more radicals by the consumption of only
one, while the propagation step only reproduces the number of radicals.

If reactions (2.3) to (2.6) are given free hands, there will be an enormous
increase in the number of radicals that are been produced. For instance, by
combining reaction (2.3), (2.4) and (2.5) as shown in Laidler (1987) [2], we
get an overall reaction of

H + 3H2 +O2 → 2H2O + 3H, (2.7)
which means that for each cycle one H atom produces three new ones. This
will escalate into a chain branching explosion if there is no function for the
radicals to be terminated. However, there are certain restrictions which will
limit the radical build-up. Dependent on temperature and pressure there
will exist termination steps, which cause the radicals to decrease in numbers.
Whether a branched chain explosion occurs or not, will then be dependent on
the competing reaction rates between chain branching and chain termination.

The reactions which are included and considered for the hydrogen-oxygen
system in this work are only the most important ones, chosen for comprehen-
sion. The references for these reactions are from ”Combustion” by Glassman
& Yetter (2008) [3]. For a complete reaction scheme, we would have had to
include many more reactions. Two reaction schemes that are frequently used
in numerical simulations are the San Diego chemical kinetic mechanism [4]
and the Li et al. mechanism [5]. The latter is quoted in Table 3.1.

2.2 Explosion limits and the oxidative
characteristics of hydrogen

For any specific fuel-oxidizer mixture there exist explosion limits, which set
the boundaries for whether an explosion or ignition will occur or not. These
boundaries are temperature and pressure based, and separates the slow re-
actions from the fast ones. For a gas to explode, very rapid reactions are

4



2.2. EXPLOSION LIMITS AND THE OXIDATIVE
CHARACTERISTICS OF HYDROGEN

Figure 2.1: Explosion curve for H2/O2 and its different limits [6]. The unit
torr equals (1/760) atm.

a necessity. The explosion limit curve, Figure (2.1), is divided into differ-
ent limit zones. To explain them one has to look at the different branched
chain mechanisms responsible and how they can be terminated by the chain
termination steps. There are various mechanisms explaining the limits.

The first limit, separating point A and B in Figure 2.1, can be explained
by the following termination steps:

H → wall (2.8)
O → wall (2.9)

OH → wall. (2.10)

This means that the radicals recombine at the walls to create reactants or
products. Since the pressure at the first explosion limit is very low, there are
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CHAPTER 2. THEORY

relatively few molecules in the mixture and fewer reactions will occur. This
implies that the size of the containing vessel is of great importance. When
the pressure is low the probability that the radicals will make it to the wall
and terminate themselves increases. The fact that the first explosion limit
depends on the diameter of the vessel has been confirmed by experiments
as stated in Glassman & Yetter [3]. If the vessel size is increased this limit
would decrease to even lower pressures.

If the pressure is increased, with a constant temperature from the first
limit, the system is in the zone between the first and second explosion limit.
In this zone the chain branched explosions are possible and will occur. This is
because the wall termination steps can no longer compete with the branching
steps due to the increased pressure, which causes a decreased probability for
radicals to reach the walls. This rapid radical production escalates the num-
ber of exothermic reactions happening and an explosion becomes inevitable.

When the pressure is further increased the system again exists in a non-
explosion zone, shown in Figure 2.1 as the zone between point C and D. In
this region reaction (2.3), which is the most effective branching step, gets
overridden by

H +O2 +M → HO2 +M. (2.11)

Reaction (2.11) is a pressure sensitive third-order reaction. In order to form
HO2 by reaction (2.11), and not OH and O as in reaction (2.3), the presence
of a third body specie is needed. The concentration of this specie is dependent
on the pressure. Higher pressures increase the likelihood for reaction (2.11)
instead of (2.3) to occur, which is the main cause for the existence of the
second explosion limit. Since HO2 still keeps its stability it will diffuse to
the walls and terminate itself, causing reaction (2.11) to serve as an efficient
H radical destroyer.

The third limit can be explained by the change in the HO2 stability due
to an even further increase in pressure. At the third explosion limit, the
radical becomes unstable and gets involved in the reaction

HO2 +H2 → H2O2 +H (2.12)

which is followed by
H2O2 → 2OH. (2.13)

The HO2 molecule then serves as a reactive radical instead of a radical ter-
minator.

Furthermore, if the temperature is above a certain level, a hydrogen com-
bustible mixture will ignite and explode more or less independent of the
pressure.
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2.3. STOICHIOMETRY AND THE EQUIVALENCE RATIO

2.3 Stoichiometry and the equivalence ratio
How is the mixture ratio between a specific fuel and the oxygen it is reacting
with defined? In order to answer, we need to look at the following definitions,
namely stoichiometry and the equivalence ratio.

If we look at the overall chemical reaction for hydrogen and oxygen (2.14)
and balance it, the reaction is called stoichiometric, meaning that there are
not any hydrogen or oxygen leftovers at the right hand side. This means that
if the volume mixture ratio between hydrogen and oxygen is 2:1 the mixture
is stoichiometric, and we experience complete combustion.

H2 + 1
2O2 → H2O (2.14)

However this is not always the case. The mixture could be fuel-lean or fuel-
rich. The equivalence ratio of a system, denoted as φ, is the ratio between
the actual fuel-oxidizer ratio and the stoichiometric fuel-oxidizer ratio. When
φ < 1 the system is fuel-lean or over-oxidized, if φ > 1 the system is fuel-rich
and φ = 1 implies that the mixture is stoichiometric. The equivalence ratio
is defined to be

φ = mfuel/moxy

(mfuel/moxy)stoich
= nfuel/noxy

(nfuel/noxy)stoich
, (2.15)

where m denotes the mass and n the number of moles.

2.4 Flammability limits
It is obvious that the equivalence ratio of a mixture affects the combustion
abilities of the system. Intuition can tell us that in order for combustion to
take place, the equivalence ratio cannot be too high or too low. There needs
to be a minimum concentration of fuel or oxidizer, in the system for a flame
front to propagate.

These limits are called the upper and lower flammability limit. They are
defined to be the necessary equivalence ratios required for a flame to be self-
supported after the ignition source is removed. In other words, the limits
denote the very richest and leanest fuel concentrations possible without the
flame extinguishing itself. Experimental data of the flammability limits for
hydrogen and air mixtures can be seen in Table 2.1.

2.5 Ignition by a point source
An induced spark is the most common way of achieving a forced ignition. It
is used in a range of applications, for instance, in the automotive cylinder
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CHAPTER 2. THEORY

Table 2.1: The Flammability Limits for Hydrogen in Air [3]

Lower(lean) Upper(Rich) Stoichiometric
Volume % 4 75 29.2

φ 0.1 7 1

inside the engine of a gasoline car. The sparks are often created by two
capacitors as an electrical discharge, with spark durations from 0.01µs to
about 100µs for larger engines.

A spark ignition is by Zeldovich approach looked upon as a point source,
which releases an amount of heat. The approach followed here are obtained
from the ignition chapter in ”Combustion” by Glassman et al. [3].

How the heat distribution varies with time can be obtained from the heat
equation

∂T

∂t
= α∇2T, (2.16)

where α = (λ/ρcp) is the thermal diffusivity and λ is the thermal conductiv-
ity. Equation (2.16) governs how the temperature distribution diffuses to its
surroundings as time evolves. The boundary conditions for equation (2.16)
in spherical coordinates are T (r =∞) = T0 and (∂T/∂r)(r = 0) = 0.

The input energy for any temperature distribution is given as

Q
′

v = 4πcpρ
∫ ∞

0
(T − T0)r2 dr (2.17)

which states that at any given time, Q′
v is the energy necessary to obtain the

given distribution when no heat is produced in the mixture.
The solution of equation (2.16) will then be

T − T0 = Q
′
v

cpρ(4παt)3/2 e
−r2/4αt (2.18)

An expression for the maximum temperature is found when we let r → 0
and (2.18) becomes

TM − T0 = Q
′
v

cpρ(4παt)3/2 (2.19)

where TM is the maximum temperature in the distribution.
The condition for ignition is when the characteristic cooling time τc is

larger than the reaction time τr. The cooling time is associated with the

8



2.5. IGNITION BY A POINT SOURCE

Figure 2.2: Different temperature zones in a laminar flame [3]

period the temperature TM, at r = 0, changes by a value θ. This small
temperature change is taken as

θ = RT 2
M

E
, (2.20)

where R is the universal gas constant and E is the activation energy. How
θ is obtained are not shown here, but can be read in the ignition chapter
in Glassman et al. [3]. To a close approximation, the characteristic cooling
time can be given as

τc = θ
dTM
dt
. (2.21)

Considering the input energy for heating a spherical volume with radius
rf from T0 to Tf uniformly, equation (2.17) becomes

Q
′

v = 4
3πr

3
fcpρ(Tf − T0), (2.22)

which leads to an expression for the characteristic cooling time

τc = 0.14 θ

Tf − T0

r2
f

α
. (2.23)

When the activation energy is sufficiently large, most of the energy release
will be close to the flame temperature, Tf . Thus, the ignition temperature
Ti, will be close to Tf . This means that the reaction zone, δ, will be a very
small region. In Glassman et al. [3] the reaction time τr, which correspond to
the reaction zone δ, is expressed with θ by saying that this small temperature
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CHAPTER 2. THEORY

difference is close to (Tf−Ti) as in the Zeldovich-Frank-Kamenetskii-Semenov
flame theory. The characteristic reaction time can then be approximated as

τr ' 2 θ

Tf − T0

α

S2
L

(2.24)

where SL is the laminar flame speed and a = α/SL is the thermal width of
the flame.

By considering the condition τc 1 τr, it can be shown that

rf 1 3.7a, (2.25)
which means that in order to get an ignition, we need a source radius which
is greater than the characteristic width of the laminar flame zone. With
this condition satisfied the nearby layers of the initial heat source will ignite
before the volume of the heat source cools.

10



Chapter 3

Numerical simulations

The minimum ignition energy for a combustible hydrogen mixture is found
be running a series of Direct Numerical Simulations (DNS) with the Pencil
Code.

3.1 Introduction
DNS is short for Direct Numerical Simulation, and unlike Large Eddy Simula-
tions (LES) and Reynold-average Navier-Stokes simulations (RANS), which
use turbulent modelling, DNS solves the full Navier-Stokes equations numeri-
cally without the use of any modelling and filtering. This does not include the
approximations done for the discretization of the relevant equations which is
the essence in any numerical method. For the time discretization the Pen-
cil Code uses a third order Runge-Kutta method and a sixth-order central
difference method is used in space.

The name pencil has its origin in that the Pencil Code uses a one dimen-
sional array of data to calculate the entire time step within the numerical
grid instead of operating with large three dimensional arrays. The main ad-
vantage of this method is that one allows an entire pencil to be stored in the
CPU’s cache without detouring it to the much slower random access memory.
This improves the efficiency of the code considerably when we are dealing
with more modern microprocessors. In some cases, the efficiency has been
shown to improve by about 60 percent. [7]

Another treat of the Pencil Code is that it is module based, which makes
it easier to customize the code for specific problems. Typical modules are
gravity, chemistry, viscosity or entropy, which can be included, excluded or
combined together in the code to form the physical properties desired. In
addition to these physical modules, there are also technical ones. For instance
the message passing interface (MPI) is a module which allows the usage of
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CHAPTER 3. NUMERICAL SIMULATIONS

multiple CPU’s.
The Pencil Code is programmed in FORTRAN and should be compatible

with the fortran90 standard and can be used on any UNIX/Linux based
system. The Pencil Code is free software which can be obtained from the
Pencil Code website [1].

In order to visualize the results obtained from the Pencil Code, a pleasant
supplement is the commercial software, IDL, in which the Pencil Code has
full compatibility with.

3.2 Governing equations
To simulate a physical problem the Pencil Code has to solve a set of equations
dependent on which modules are necessary to include. In our case, we need
to solve the conservation equations for mass, momentum, species and energy,
together with the equation of state.

The equation for conservation of mass is given as

∂lnρ
∂t

+ (U · ∇)lnρ = −∇ ·U, (3.1)

where U is the velocity vector and ρ the density. The momentum equation
has the form

∂U
∂t

+ (U · ∇)U = 1
ρ

(−∇p+ Fvs) + f , (3.2)

where Fvs is the viscous force, p is the pressure and f is any type of external
forces, e.g. gravity. The conservation law of the species is written as

ρ
∂Yj
∂t

+ ρ(U · ∇)Yj = −∇ · Jj + ω̇j, (3.3)

where ω̇j is the reaction rate, Jj is the diffusive flux and Yj is the mass
fraction. The j’s denote the different species. Lastly, the energy equation is
listed as(

cp −
R

M

)
DlnT

Dt =
∑
j

DYj
Dt

(
R

Mj

− hj
T

)
− R

M
∇ ·U + 2νS2

T
− ∇ · q

ρT
, (3.4)

where cp is the heat capacity at constant pressure, R is the universal gas
constant, M is the molar mass, T is the temperature, h is the enthalpy, q is
the heat flux and D/Dt = ∂/∂t+ U · ∇.

For a more thorough discussion on the equations solved in the Pencil
Code, see Babkovskaia, Haugen and Brandenburg (2010) [8].
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3.3. INITIAL AND BOUNDARY CONDITIONS

3.3 Initial and boundary conditions

3.3.1 The initial temperature distribution
To simulate an ignition source in the Pencil Code an initial temperature
distribution is inserted into the domain. The distribution is chosen to be
Gaussian, and parallels could be drawn to a real life heat source that has
its hottest spot in the center. For instance, if a cross-section of a real elec-
trical spark is made, the temperature distribution at this cross-section could
compare well with a Gaussian shaped temperature distribution in two di-
mensions. The initial distribution is given by (1.1)

T (r) = (Tmax − T0) e−
(

r
rs0

)2

+ T0, (3.5)

where Tmax is the maximum temperature, T0 is the temperature of the sur-
roundings and rs0 is the radius of the distribution. Since the factor of 1/2 is
not included in the exponent of the exponential function in equation (3.5),
the standard deviation is

√
2rs0 . Figure 3.3.1 illustrates the different vari-

ables and for a one dimensional simulation this is how the distribution would
look like. For the two dimensional simulations the same distribution is used,
only that it is rotated in the plane and has its maximum temperature in the
center. If one expresses the 2D distribution in terms of polar coordinates,
it would have a constant temperature at any given r for all θ. In other
words, the distribution has circular symmetry. The same goes for the 3D
simulations, they are chosen to have spherical symmetry.

3.3.2 Ghost points and boundaries
To implement boundaries for a sixth-order difference scheme in space, we
need something called ghost points. These are points outside the grid where
no equations are solved, but they are used for calculations at the boundaries.
In order to calculate a value of a point on the domain, the values of the
six closest points in each dimension is needed when dealing with a sixth
order method in space. At the boundaries, it is then necessary to include
three points outside the domain. If nx is the number of grid points in the
x-direction of the domain, the total number of points in the applicable array
would be nx + 6.

The values of the ghost points can be instructed to be periodic, symmetric
or asymmetric relatively to the grid points. Asymmetric ghost points imply
zero values at the boundary, while symmetric ghost points imply zero first
derivatives. In the periodic condition the ghost points are given the values
of the three closest points to the boundary at the opposite end of the array.
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CHAPTER 3. NUMERICAL SIMULATIONS

Figure 3.1: Illustration of the initial Gaussian temperature distribution,
where T0 = 300 K, rs0 = 0.05 cm and Tmax = 1300 K. The value
(Tmax − T0)e−1 + T0 denotes the temperature at rs0 .

14



3.4. ENERGY CALCULATIONS

To simulate a closed vessel or container, we need to stage the ghost points
in such a way that the boundaries act like walls. Therefore, the velocity
components are set to asymmetric, since the velocity at the walls must be
zero. The other components such as temperature, pressure, mass fraction of
the species and density must have a zero first derivatives at the walls and
need symmetric ghost points. The domain is chosen to be sufficiently large,
which implies that ∂T

∂r
(r = rmax) = 0.

3.3.3 Initial mixture
The flammable gas we want to simulate is dry air mixed with hydrogen, so
the initial species are H2, O2 and N2. We have assumed that all the minor
species in the air, such as argon and carbon-dioxide are negligible and that
the initial gas is completely homogeneous. The air is set to consist of 79%
nitrogen and 21% oxygen when measured in volume percentage. This volume
percentage ratio is set to persist when hydrogen is included into the mixture.

The overall reaction of hydrogen and air can be written as

H2 + a
(
O2 + 79

21N2

)
→ Products (3.6)

where a = 1
2φ and equal to 1/2 if the mixture is stoichiometric. For a desired

equivalence ratio, the initial volume and mass fractions of the system can be
calculated.

The radicals are not included in the initial mixture, even though the
temperature profile already exists in the system at time zero. The radicals
will start to form immediately after the simulation is started.

3.4 Energy calculations
The energy required is the input energy necessary to obtain a initial temper-
ature distribution. To show how the energy could be calculated, the easiest
is to consider the one dimensional case. It is here shown analytically for
illustration purposes.

By transforming equation (2.17) to yield for one dimension the input
energy, in the form of heat, is given as

Q = 2
∫ ∞

0
cp(T (r)) · ρ(T (r)) · (T (r)− T0) dr, (3.7)

where Q is the input energy per unit area and T (r) is the initial temperature
distribution as given in equation (3.5). The expression for the density as
a function of temperature can be found by the use of the ideal gas law,
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P = ρRT
M

, with the pressure, P , and the mean molar mass, M , held constant.
The density is then given as

ρ(T (r)) · T (r) = ρ0 · T0. (3.8)

where ρ0 and T0 are the ambient values. Inserting equation (3.5) into equation
(3.7) and (3.8), and then combine the last two, it yields

Q = 2ρ0T0

∫ Lx

0
cp(T (r)) (Tmax − T0)e−( r

rs0
)2

(Tmax − T0)e−( r
rs0

)2
+ T0

dr, (3.9)

where Lx is the length of the domain. A simplification of the specific heat
would be to average it in the following way,

cp(T (r)) ' cp = cp(Tmax) + cp(T0)
2 , (3.10)

which is done here to simplify the illustration. It is now possible to calculate
equation (3.9), with a numerical solver, for a given set of rs0 and Tmax.

Strictly speaking, the specific heat should be calculated as a polynomial
function of temperature, where the constants are obtained from thermody-
namical tables. Then the calculations of the input energy would be more
accurate.

In this thesis the energy is actually obtained numerically in the Pencil
Code, and the method above was showed to make the energy calculation
more comprehensible. How it is done in Pencil Code is by instructing the
program to calculate the energy for each grid point and then take the sum
over the domain. The ambient temperature is subtracted from the tempera-
ture distribution to give the excess energy in each point. This can, for one
dimension, be illustrated as

Q =
nx∑
i=1

cpi
ρi(Ti − T0)∆x (3.11)

where nx is the number of grid points along the x-direction, i denotes the
different grid points and ∆x is the spacing between them when an equidistant
grid is assumed.

When comparing the energy calculations from equation (3.9) with cp,
and the calculations from equation (3.11) done in the Pencil Code, they
differ from each other by about (1 − 3)%. This error is mainly due to the
averaged specific heat in equation (3.9). In the Pencil Code cp is calculated
along the grid points based on the current temperature at each point, while
in equation (3.11) the specific heat is only averaged between Tm and T0.
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3.5. THE H2/O2 REACTION MECHANISM

3.5 The H2/O2 reaction mechanism
The reaction mechanism used for hydrogen-oxygen combustion is the Li et
al. mechanism [5]. The mechanism is shown in Table 3.1 and involves 19
reactions. This is a complicated process, but compared to combustible sys-
tems containing hydrocarbons it is a rather simple mechanism. The most
important reactions are covered in chapter 2.

17



CHAPTER 3. NUMERICAL SIMULATIONS

Table 3.1: The hydrogen-oxygen reaction mechanism from Li et al.[5]

No. Reaction

H2/O2 chain reaction
R1 H +O2 = O +OH
R2 O +H2 = H +OH
R3 H2 +OH = H2O +H
R4 O +H2O = OH +OH

H2/O2 dissociation/recombination reaction
R5 H2 +M = H +H +M
R6 O +O +M = O2 +M
R7 O +H +M = OH +M
R8 H +OH +M = H2O +M

Formation and consumption of HO2
R9 H +O2 +M = HO2 +M
R10 HO2 +H = H2 +O2
R11 HO2 +H = OH +OH
R12 HO2 +O = O2 +OH
R13 HO2 +OH = H2O +O2

Formation and consumption of H2O2
R14 HO2 +HO2 = H2O2 +O2
R15 H2O2 +M = OH +OH +M
R16 H2O2 +H = H2O +OH
R17 H2O2 +H = HO2 +H2
R18 H2O2 +O = OH +HO2
R19 H2O2 +OH = HO2 +H2O
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3.6 Hallmarks of ignition
The Figures, 3.2 and 3.3, show the time development of two different sim-
ulations. Seven of the graphs indicate how the distinctive mass fractions
develop, where the last one shows how the maximum temperature, Tm(t),
changes through time. The two simulations have identical initial conditions,
except for the width, rs0 , which differs by 0.001 cm. Although the difference
is small, the simulation represented in Figure 3.3, with rs0 = 0.028 cm, ig-
nites, while the other simulation shown in Figure 3.2, with rs0 = 0.0279 cm,
does not. By comparing the two figures, a clear distinction between them
can be seen, in that something drastic happens after about 0.2 ms in Figure
3.3. After this point there is a sudden increase in temperature, a large radical
build-up and the mass fraction of the reactants are dropping. Furthermore,
the end product, H2O, starts to form quicker and increases its concentration.
All these signs are characteristics of an ignition. In Figure 3.2 we see that the
mass fraction of hydrogen gas, H2, is almost constant, the radicals appear in
very small concentrations and the temperature is dropping at a steady rate
due to heat diffusion. Please note that the mass fraction scales in the two
figures, concerning H, O and OH in particular, are very different.

These two simulations are chosen to illustrate how a case of ignition is
determined and separated from a non ignition case. To find and determine
the exact temperature profile necessary for ignition, one has to do a number
of simulations per set of initial conditions. For instance, Tmax is, for each
simulation, varied until the exact height of the temperature distribution for
an ignition is found, with rs0 and other parameters held constant. Then the
temperature profile is minimized to barely give ignition, which means that
the energy it corresponds to will be the minimum ignition energy.

An interesting side notice here is the fact that the radicals HO2 and H2O2
in Figure 3.3 have a sudden increase and decrease in their mass fractions at
the time of ignition. Since our simulations are done with a pressure of 1 atm
we find ourselves in the region of the third explosion limit. In this region the
stability of HO2 ceases and reaction (2.12) starts to form H2O2 radicals.

Figure 3.4 demonstrates how the whole temperature distribution develops
in time when an ignition is eminent. It is taken from the same simulation in
which Figure 3.3 was based on. The first panel, 3.4(a), shows the initial tem-
perature distribution at time zero. Here one can notice the initial conditions
rs0 = 0.028 cm, Tmax = 1300 K and the typical Gaussian shape.

The second panel 3.4(b) is captured at the time where Tm(t) has its
lowest value. It can be seen that the distribution is more lubricated than
in the previous panel. This is because the temperature has diffused to its
surroundings and the mixture has not yet had time to start to produce heat.
Up to this point, the heat diffusion has been greater than the heat generation
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Figure 3.2: This figure shows a non ignition case. It is a 1D simulation with
the initial conditions φ = 0.6, Tmax = 1300 K, T0 = 298 K, P0 = 1 atm and
rs0 = 0.0279 cm. The mass fractions are denoted as Y .
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Figure 3.3: This figure shows a case of ignition. It is a 1D simulation with
the initial conditions φ = 0.6, Tmax = 1300 K, T0 = 298 K, P0 = 1 atm and
rs0 = 0.028 cm. The mass fractions are denoted as Y .
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(a) t = 0 (b) t = 0.124 ms

(c) t = 0.221 ms (d) t = 0.257 ms

Figure 3.4: The panels show the time development of the temperature distri-
bution for Figure 3.3.

caused by the branched chain reactions, and the temperature is now at the
turning point, where it starts to rise.

The next two panels, 3.4(c) and 3.4(d), show that heat is rapidly being
produced and that the temperature is rising fast. From panel 3.4(d) it is
clear that an ignition has taken place and the flame front on each side of the
origin is noticeable.
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Chapter 4

The method of the simple
model

4.1 The simple model introduction
The purpose of this ignition model is mainly to involve less calculation power
than what the Pencil Code simulations need and still be able to determine the
temperatures and radii necessary for a potential heat source in a combustible
mixture to ignite. This would in particularly show its usage if the model could
reproduce the results done by Pencil Code in 3D, since these simulations
require most computation time. In the following the model is referred to as
just the simple model.

The main simplifications done in the simple model are, that it does not
directly include chemistry, and that it only calculates the temperature in one
point. The temperature is calculated at the point were r = 0.

Chemistry is required for the ability to predict properties about ignition.
Therefore, chemistry also needs to be accounted for in the simple model,
but here it is done in an indirect manner. The model bases its existence
on information about the ignition delay time, τig, for a given mixture. The
ignition delay time is usually given as a function of temperature, as seen
in Figure (4.2), and when transferred into this model and used correctly, it
should provide the simple model with the necessary information needed in
order to replace the direct chemical calculations.

Even though the calculations in this model only involves one single point,
it is still desirable to include diffusion of heat as time evolves. This is done by
evaluating the appropriate equations at r = 0 after the connection between
the heat equation and the temperature distribution has been made. Since the
simple model assumes a Gaussian temperature distribution, which is sym-
metric around r = 0, the model will probe the maximum center temperature,
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Tm(t), at any given time.
In the following sections it will be shown how the Gaussian temperature

distribution and the heat equation are connected to form an expression of the
center temperature as a function of time. Furthermore, it will be illustrated
how this expression gets connected with the ignition delay time, and how
the simple model determines a case of ignition. Hydrogen will be used as
the combustible fuel in the sense that the ignition delay time data is from a
hydrogen-air mixture.

By setting the system properties, as temperature distribution and equiv-
alence ratio in the simple model, equal to how it is set in Pencil Code, the
condition for reproducing the results from Pencil Code should be present.

4.2 Obtaining an expression for the center
temperature

The Gaussian temperature distribution has the following shape when the
time dependency is included

T (r, t) = (Tm(t)− T0) e−( r
rs(t))

2

+ T0, (4.1)
where T0 is the ambient temperature, Tm(t) the maximum temperature and
rs(t) is the radius of the heat source, in this case the standard deviation. The
initial values at t = 0 are defined to be

Tm(0) = Tmax (4.2)
rs(0) = rs0 . (4.3)

The heat equation is needed in this model in order to include heat diffu-
sion, and is given as

∂T

∂t
= α∇2T, (4.4)

where α is the thermal diffusivity. In 2D, it is convenient to use the polar
coordinate system, and in 3D it is the spherical coordinate system which is
the most convenient one. Since both θ an φ are set to be symmetric, the
derivatives with respect to θ and φ will be zero in our system. Hence, the
Laplace operator here is only given with its r − terms:

∇2 = ∂2

∂r2 , 1D (4.5)

∇2 = 1
r

∂

∂r

(
r
∂

∂r

)
, 2D (4.6)

∇2 = 1
r2

∂

∂r

(
r2 ∂

∂r

)
. 3D (4.7)
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TEMPERATURE

By inserting the Gaussian temperature distribution, equation (4.1), into
the heat equation, equation (4.4), and then evaluate the remaining equation
at r = 0

∂

∂t
T (r, t)

∣∣∣∣∣
r=0

= α∇2
(

(Tm (t)− T0) e−( r
rs(t))

2

+ T0

) ∣∣∣∣∣
r=0

, (4.8)

it simplifies to
∂Tm(t)
∂t

= −2αN Tm(t)− T0

rs(t)2 , (4.9)

where N = 1, 2, 3 is the number of dimensions.
Since equation (4.9) has two variables that depend on time, Tm(t) and

rs(t), an additional relation between them is needed in order to solve the
problem. A relation could be obtained by stating that the area under the
Gaussian curve is constant at any given time as heat diffuses. In the three
different dimensions this condition can be written as

2
∞∫

0

(T (r, t)− T0) dr = constant, (4.10)

2π
∞∫

0

(T (r, t)− T0) r dr = constant, (4.11)

and

4π
∞∫

0

(T (r, t)− T0) r2 dr = constant, (4.12)

for the 1D, 2D and 3D cases, respectively. Equation (4.10) is similar to
equation (3.7), but here cp and ρ are taken as constants to simplify equation
(4.17). By inserting equation (4.1) into (4.10), (4.11) and (4.12) the integrals
become

2
∞∫

0

(Tm(t)− T0) e−
r2

rs(t)2 dr =
√
π · ((Tm(t)− T0) · rs(t), (4.13)

2π
∞∫

0

(Tm(t)− T0) r e−
r2

rs(t)2 dr = π · ((Tm(t)− T0) · r2
s (t), (4.14)

4π
∞∫

0

(Tm(t)− T0) r2 e
− r2

rs(t)2 dr = π3/2 · ((Tm(t)− T0) · r3
s (t). (4.15)
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Since the integrals are constant, the initial conditions (4.2) and (4.3) can be
used as follows

πN/2 · (Tm(t)− T0) · rs(t)N = πN/2 · (Tmax − T0) · rNs0 . (4.16)

From this equation rs(t) can be solved for, and the expression simplifies to

rs(t) = rs0

(
Tmax − T0

Tm(t)− T0

) 1
N

, (4.17)

where N again is the number of dimensions. The variable rs(t) can now be
replaced in equation (4.9) to obtain a solvable first order differential equation,
which is given as

∂Tm(t)
∂t

= −2αN (Tm(t)− T0)
2+N

N

r2
s0 (Tmax − T0)

2
N

. (4.18)

The problem that remains is how to treat the thermal diffusivity.

4.2.1 Assuming that α is constant
When it is assumed that α is constant, equation (4.18) can be solved analyt-
ically with the initial condition (4.2), to form the following expression

Tm(t) = rNs0

(Tmax − T0)(
4αt+ r2

s0

)N
2

+ T0. (4.19)

Then by inserting equation (4.19) into equation (4.17), rs(t) is found to be

rs(t) =
√
r2

s0 + 4αt. (4.20)

To assume that α is constant is not a very correct assumption, but it
is done in an attempt to make the simple model as simple as possible and
indeed the expressions get simpler. Furthermore, it would limit the amount
of external information one would need.

4.2.2 Assuming a realistic α which depends on tem-
perature

A more correct way to solve equation (4.18) is to use a thermal diffusivity
which depends on temperature. The thermal diffusivity, α, is given in terms
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TEMPERATURE

Figure 4.1: Shows the thermal diffusivity as a function of temperature in a
hydrogen-air mixture. The dots are the data values obtained from the Pencil
Code, and the solid line is the fitted function curve.

of the thermal conductivity, λ, the specific heat with constant pressure, cp,
and the density, ρ, in the following way

α = λ

cpρ
. (4.21)

Figure 4.1 shows data points of α, obtained from the Pencil Code, as a
function of temperature. To obtain a function for the thermal diffusivity
based on the data points, regression is used. A function which accounts well
is a fourth order polynomial on the form

α (Tm(t)) =
(
E +DTm(t) + CT 2

m(t) +BT 3
m(t) + AT 4

m(t)
)
. (4.22)

The parameters from the regression are given in Table 4.1.
Equation (4.18) now looks like

∂Tm(t)
∂t

= −α (Tm(t)) 2N
r2

s0

· (Tm(t)− T0)
2+N

N

(Tmax − T0) 2
N

, (4.23)

which is a difficult equation to solve analytically. To solve this differential
equation, a numerical fourth order Runge-Kutta method is used.
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Table 4.1: The parameters from the regression of α(T )

Parameter Value

A 0.133608 ·10−13

B 0.208675 ·10−9

C 0.234699 ·10−5

D 0.971533 ·10−3

E 0.257533 ·10−5

4.3 The ignition delay time
Until now, the physical elements included in the model do not involve any
chemistry. To account for all the chemistry involved in an ignition process
the ignition delay time is used.

The typical way to address data about the ignition delay time, τig, in
the literature, is by plots of how τig depends on temperature. Usually the
horizontal axis is then given as the inverse initial temperature and the vertical
axis by the logarithm of the ignition delay time, see Figure 4.2.

For the simple model to be able to predict ignition in a given mixture,
one need to obtain data on the ignition delay time from that specific mixture.
In this case the mixture is that of hydrogen-air, with an equivalence ratio of
0.8.

In order to measure the ignition delay time, one needs a definition of
when an ignition has taken place. In other words, the ignition delay time
must be defined, and there are two common ways of doing that. The first
definition is that τig is measured until the current temperature has increased
400 K past the initial temperature and the second one defines it to be the
time it takes before the derivative of the temperature, with respect to time,
is at its highest.

Figure 4.2 shows how the ignition delay time depends on temperature.
In the figure there are three data sets, one is from Zhao et al. (2010) [9],
and the other two are obtained from simulations with the Pencil Code. The
results from Zhao et al. is based on a stoichiometric hydrogen-air mixture
and the two results from the Pencil Code is for an equivalence ratio of 0.8.
The fact that the results from Zhao et al. shows a minor deviation, could be
explained in that the equivalence ratio is different.

The two ignition delay time results from the Pencil Code, which is based
on the two different methods of ignition determination, differs when the tem-
perature gets sufficiently high. For such high temperatures the first definition
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is the weakest one because there seems to be an upper limit of how high the
temperature in the mixture can get. At some point the mixture will not ex-
ceed 400 K above the initial temperature and τig increases very rapid. This
tendency can be seen from the figure, and the regression line is calculated
based on the second ignition method for high temperatures.

The ignition delay time results from the Pencil Code are obtain by doing a
zero dimensional simulation, and since the ignition delay time should be mea-
sured for a uniform temperature, there are no need for a spacial grid. This will
effectively reduce the calculation time and a result from a higher dimensional
simulation with a homogeneous temperature and mixture would produce the
same result. For these simulations a Runge-Kutta-Fehlberg method is used
for the time discretization.

The reason why regression is done, is because the ignition delay time is
needed as a function of temperature, τig(T ), in order to relate the data from
Figure 4.2 to equation (4.18) and (4.24).

The goal of the simple model is to use τig(T ) together with the Gaussian
temperature distribution and the heat equation, and then predict, based
on the initial parameters Tmax and rs0 , if the mixture ignites or not. Until
now, it has been shown that the ignition delay time can be connected to the
temperature Tm(t), but to decide if a gas ignites an additional condition is
needed. This condition would also need to relate τig(T ) together with the
simulation time t.

To do this a variable P is defined such that it is 1 when the system has
reach ignition, t = tig, and zero when t = 0. An equation, which fulfill these
requirements, is

P =
tig∫

t=0

1
τig(Tm(t)) dt. (4.24)

The calculation process of this model could be easier to understand in
terms of a stepwise explanation. Before the calculation starts one sets the
parameters, Tmax and rs0 , to what is desirable. Then a time step ∆t is set and
the calculations can start. For each time step, some heat diffuses away, and
a new temperature, Tm(t + ∆t), is obtained from equation (4.19) or (4.23).
Based on this new temperature a new ignition delay time, τig (Tm (t+ ∆t)),
is obtained, which gives a new contribution to the variable P . If all the
contributions add up to 1, the current parameters and conditions have pro-
duced an ignition. If not, P will stagnate and the process will count as a non
ignition case.

As seen from Figure 4.2, the lower the temperature gets, the higher the
ignition delay time gets, which means that the term 1/τig(Tm(t)) in equation
(4.24) gets smaller. If heat is diffused away too quickly P will never reach 1.
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Figure 4.2: The graph shows the ignition delay time as a function of the
initial temperature. The value of the axis are typically given as, log (τig) and
1000 K/Ti. The red data points are taken from Zhao et al. (2010) [9].
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Chapter 5

Results

5.1 Ignition and the spatial design of
the heat source

Ignition is affected by how heat is distributed inside a given domain. What
the results in this section will show is how the width and the maximum
temperature, rs0 and Tmax, affects ignition. This is done in the light of
minimizing the ignition energy. The temperature distribution is chosen to be
Gaussian as described in chapter 3. Furthermore, simulations from the simple
model will be shown and compared with the Pencil Code method. The width
of the temperature distribution which is considered for these simulations
reaches from rs0 = 0.01 cm to rs0 = 0.1 cm.

5.1.1 The result from the Pencil Code
As mentioned in section 3.3.3, the simulation scheme is constructed such that
the radicals in the mixture do not exist prior to the start of the simulation.
In an experimental setting, with a spark ignition for instance, it would take
an amount of time for the gas mixture to get heated to its final temperature.
During this heating process the radical concentration in the mixture will
increase near the source. When the heating source then is removed and there
exists a temperature distribution in the system, the mixture will already
contain an initial radical concentration. With this in mind one could state
that the simulations in the Pencil Code have achieved a temperature profile
infinitely fast. Experiments are typically performed with an induction time
in the range of 5 ns to 1 ms [10], [11], [12]. The induction time is a measure
of the time an external source is held in a combustion chamber before it is
turned off. Considering that the simulations span about 0.3 ms and have a
time step ∆t of about 0.01− 0.04 µs the results should be comparable with
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Figure 5.1: The results shown are from the Pencil Code and are done with the
following parameters, φ = 0.8, T0 = 300 K and P = 1 atm. It shows how the
Gaussian temperature distribution needs to be shaped in order for ignition
to be reached. The number of grid points in the simulations are 128N .

the studies of low induction time.

The results of the Pencil Code simulations are shown in Figure 5.1. It
shows the necessary Tmax to reach ignition for each rs0 . From the figure it
can be seen that the necessary temperature needs to be increasingly higher
as the width, rs0 , is decreased. This tendency can be seen in all the three
simulations, but it gets stronger for higher dimensions. Also the temperature
for the different dimensions seems to coincide as the radius gets larger. In
general the temperature is higher as one moves up in dimensions.

For each of the radii, the domain of the system is adjusted to give a good
resolution and the number of grid points for these simulations are set to be
128 in each dimension. When the number of grid points were increased to
256, the results stayed the same.

The simulation set done in 3D does not show any result for the case where
rs0 = 0.01 cm. At this point no ignition was produced even at temperatures
towards 5000 K.
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THE HEAT SOURCE

5.1.2 The results from the simple model
with different α’s

There are different set of results from the simple model regarding how the
thermal diffusivity, α, is chosen. In Figure 5.2 the results are compared with
each other together with the Pencil Code results. To get an easier overview
of the comparison, only results from the 2D simulations are shown.

From Figure 5.2 it can be seen that the two cases, where α is constant,
do not overlap the results of Pencil Code as good as the last Simple Model
case, where α depends on temperature. This outcome was anticipated since
the thermal diffusivity indeed does depend on temperature. However, for
larger source radii the constant case where α = 5cm2/s seems to coincide
well. They overlap in the region where rs0 is larger than about 0.03 cm and
then separate. The main explanation for this, regarding better results with
higher radii, lies in the fact that the larger the radius of the ignition source
is, the less receptive the temperature of the ignition source is to diffusion.
When it is less receptive, the initial temperature necessary for ignition can be
lower, which means that the temperature from the initial state until ignition
varies less. Therefore, when the temperature does not change considerably,
the thermal diffusivity will stay more unchanged. It can also be seen that
when α = 9 cm2/s, the results propose an overall higher temperature for
large radii, but for small radii it still does not show the same rapid increase
in Tmax as the results do for the Pencil Code and the simple model with
α = α(Tm).

From Figure 4.1 it can be seen that a α value of 5 cm2/s and 9 cm2/s
represents a temperature of about 1300 K and 1900 K respectively. By using
a constant α, it would mean that the model uses an underestimated α when
Tm is higher than the constant temperature value α corresponds to.

Therefore, it is chosen to mainly focus on the most accurate version of
the simple model. Further details on the two different Simple Models can be
seen in section 4.2.1 and 4.2.2.

5.1.3 Comparison of the simple model with α(Tm) and
the Pencil Code

In Figure 5.3 the simple model results with α = α(Tm(t)) can be seen for
all the dimensions. They are compared side by side with the results from
the Pencil Code. The simple model with constant thermal diffusivity is
not compared beyond the comparison in Figure 5.2 because of their lack in
reproducing the Pencil Code results. From Figure 5.3, the simple model,
which includes the thermal diffusivity’s dependency on temperature, is very
close to the Pencil Code results in all dimensions.
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Figure 5.2: These results are from the simple model and compare the different
α assumptions. To make the comparison easier, only the 2D results are shown.
The Pencil Code result can also be seen in the figure.

It can be seen from the figure that the simple model have a small tendency
to overshoot the Pencil Code results for 1D and 2D, but for the 3D case it
seems that the opposite is true. However, in general the result is surprisingly
good.

As mentioned, the Pencil Code lacks data for the 3D case where the radius
is equal to 0.01 cm. This is found by the simple model to be 5640 K. This
temperature is tremendously high and is an enormous increase from where
rs0 = 0.015 cm. To be able to show the other results in Figure 5.3 properly,
this point has not been included.
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Figure 5.3: In this figure the results from Pencil Code and the results from
the simple model are compared for all the dimensions.The parameters are
T0 = 300 K, φ = 0.8 and P = 1 atm.
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Table 5.1: MIE’s dependency on the heat source radius

Geometry E(rs0) Domain

1D 422.4 r0.83
s0 rs0 ∈ [0.01, 0.1] cm

2D 713.2 r1.70
s0 rs0 ∈ [0.01, 0.1] cm

3D 1310.5 r2.62
s0 rs0 ∈ [0.015, 0.1] cm

5.2 MIE of the heat source
This section presents the MIE results based on the simulations from the
Pencil Code. The MIE is calculated according to section 3.4 and the results
are shown in Figure 5.4. The figure also show the simulation results from
Maas et al. (1988) [10] and Kim et al. (2004) [11], where the first one is
based on a stoichiometric hydrogen-oxygen mixture, whereas the second one
is based on a stoichiometric hydrogen-air mixture (φ = 1). Both Maas and
Kim have P = 1 atm and τs = 1 µs, where τs is the energy duration time
(induction time). The figure has logarithmic axis in order to see and compare
the results in a proper way.

The figure denotes the proposed MIE from Glassman et al. [3] of 0.018
mJ. This result is based on experimental results from Calcote et al. [13] and
Blanc et al. [14], and was found when φ = 0.8.

For each of the Pencil Code simulations, a power regression analysis has
been performed in order to see its dependency on the source radius, rs0 , in
the given domain. The dependency can be seen in Table 5.1 and Figure 5.4.

Figure 5.5 shows the energy densities of the different dimensions. The
density is found by dividing the different energies by the unit length, the unit
area or the unit volume, dependent if it is 1D, 2D or 3D. From the figure it
can be seen that the energy density curves follow the same tendencies as in
Figure 5.1.
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Figure 5.4: In this graph the MIE results from the Pencil Code can be seen
in 1D, 2D, and 3D, and they are also compared with simulation results from
Maas et al. (1988) [10] and Kim et al. (2004) [11]. For each of the result
from the Pencil Code, a curve fitting line shows the MIE dependency on rs0 .
Also the MIE proposed in Glassman et al. [3] based on experimental results
are shown.
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Figure 5.5: From this graph the MIE density from the Pencil Code results
can be seen. The figure denotes how the densities are obtained.
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Chapter 6

Discussion

6.1 Ignition and the spatial design of
the heat source

6.1.1 The Pencil Code
In Figure 5.1 there are certain tendencies which can be noticed. It can
be seen that the three simulation sets show the same tendency to have an
increasing Tmax as the radius, rs0 gets smaller. This behavior amplifies itself
as the spacial dimension of the simulations are increased. These patterns can
largely be explained by diffusion of heat.

For small radii, heat is diffused away from the center more quickly than
for larger radii. This can intuitively be understood, because at the same
amount of time, a wide distribution will be able to retain a higher portion of
its initial temperature profile, than a narrow one. Then to achieve ignition for
a very peaked distribution, a very high Tmax is needed since the radicals in the
mixture need some time to build up their concentrations. If the temperature
drops to quickly, below a certain value, the radical production will come to
a stop and no ignition will occur.

One can also see this argument by looking at equation (4.18), which states
that

∂Tm(t)
∂t

∼ −(Tm(t)− T0)
2+N

N

r2
s0

. (6.1)

This equation tells how the center temperature, Tm(t), depends on the initial
source radius. One can see if the radius is small, the temperature will drop
quicker than if it is large. Even though equation (4.18) is derived for the
simple model, and there are some simplifications related to it, it gives a good
indication of why the results in Figure 5.1 look as they do.
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The simulations from the Pencil Code in Figure 5.1 also show that the
dimensionality has a large impact on the results. The 3D simulations, in
general, need higher temperatures than the other two and so on. The reason
that there is this difference has to do with what the radius of the heat source
represents for the different dimensions, which then relates to how diffusion
of heat operates. The radius of the heat source, rs0 , for 1D, 2D and 3D
represents respectively, the length on a line, the radius of a circle and the
radius of a sphere.

For the 3D case, the temperature is Gaussian distributed in all the di-
rections in the form of a sphere. In other words, if a spherical coordinate
system is used to explain the distribution, θ and φ will be symmetric for any
constant r. This source has the shape of a point in space and implies that
heat will be diffused equally in all directions.

However, in the 2D simulations, the geometry of the distribution is re-
duced to a circular plate in a 2D-plane. For cylindrical coordinates this
would represent a symmetric θ for any given r in the plane where z = 0,
which would be the same as to use polar coordinates. Diffusion in this case
would limit itself to apply only in the 2D-plane, which is natural because
of the dimension in which the simulation is done. But if one imagines this
two dimensional distribution in 3D, and for it to have no diffusion in the
z-direction, the distribution would need to be an infinite long cylinder. Heat
diffusion only occurs where there is a temperature difference, and since this
cylinder would be symmetric about the plane where z = 0, no diffusion would
happen along this direction.

Lastly, the 1D case is a temperature distribution along a line which is
symmetric around the point where r = 0, see Figure 3.3.1. Here there is
only diffusion of heat along this line, and from the center of the distribution
there are then only diffusion in two directions. To try to see what spatial
design this heat source would have in a 3-dimensional space, the 3D structure
would need to represent a geometry where diffusion of heat only occurs in
two directions. A geometry which could fulfill this requirement is an infinite
plane in space.

The Laplace operator which is used in the heat equation differs from itself
depending on dimension, coordinate system and symmetrical terms. For the
three cases discussed above, the 1D, 2D and 3D case, the Laplace operator
is given as equation (4.5), (4.6) and (4.7). This effects the heat equation,
and as seen from equation (4.9), which was developed for the simple model,
one sees that it effects how fast the center temperature drops. For the cases
where heat diffusion causes the center temperature to drop quicker one would
need a higher Tmax or a larger rs0 to reach ignition.

The point to be made here is that it seems as diffusion of heat, which is
much determined by the spatial design of the heat source, can explain the
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ignition results in Figure 5.1.
As the radius get sufficiently large the results for all dimensions seem to

coincide, as diffusion of heat gets less important. According to the explosion
limits, (Figure 2.1), the lowest temperature for ignition with 1 atm is about
850 K. This appears to be in good accordance to the temperature the results
in Figure 5.1 seems to coincide towards.

6.1.2 The simple model
The results from the simple model are plotted alongside with the results from
the Pencil Code in Figure 5.3. The goal of the simple model was to try to
reproduce the results from the Pencil Code. As seen from the results, the
simple model is capable of reproducing results from the Pencil Code despite
its simplifications.

In general the results overlap best for large radii and tend to deviate more
for the smaller radii. This effect show itself in the 1D case and especially in
the 2D case which has the largest deviation of about 200 K for the smallest
radius of 0.01 cm. For the 3D case it would then be natural to anticipate
an even larger deviation for small radii, but as seen in the figure this is not
the case. In 3D, the simple model curve follows the curve of the Pencil Code
good for all radii, but in contrast to the 1D and 2D results, the simple model
curve tends to lie somewhat beneath the Pencil Code curve.

6.1.2.1 Simplifications

The simplifications done in the Pencil Code method compared to a real life
ignition event also apply for the simple model. In addition the simple model
only solves the heat equation and do not include chemical reactions. This
means that there is not generated heat in the simulations and the tempera-
ture, Tm, will only drop according to the heat equation as time goes by. The
Pencil Code on the other hand, models all the chemical equations alongside
with the heat equation. Because of this, it is natural to believe that the cen-
ter temperature, Tm, will decrease quicker with the use of the simple model,
than with the use of the Pencil Code. A faster temperature decrease implies
that a higher Tmax would be needed for ignition. For the particular case used
in Figure 6.1 it can be seen that Tmax is higher in the simple model. This
figure shows the time development of the center temperature, Tm, for both
methods and is taken from the 1D results in Figure 5.3 where rs0 = 0.03 cm.
As seen, Tm decreases more for the simple model than for the Pencil Code.
This deviation is small in the beginning, but increases as there is produced
more and more heat in the Pencil Code case. The vertical blue line in the
figure indicates the time where the variable P , equation (4.24) in the simple
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Figure 6.1: This figure shows how the temperature evolves with time. The
red line is from the simple model and the black line indicates the result from
the Pencil Code. The vertical line denotes at what time the variable P has
reach one. Both simulation are done in 1D with rs0 = 0.03 cm. The initial
center temperature, Tmax, needed for ignition is equal to 1314 K for the simple
model and 1287 K for the Pencil Code.

model, has reach one. One can notice that the differences in temperature do
not show itself in any large parts before after the time is such that P = 1.
By looking at both Figure 4.2 and equation (4.24) it can be noticed that a
higher temperature contributes more on the variable P ’s way towards one
than a lower temperature. The fact that the highest temperatures in the
simple model simulations are present where the time is small, indicates that
the most essential part for ignition determination is in the beginning of the
simulations. Since it is here that the simple model overlap best with the
Pencil Code, the simple model models close to the true temperature, which
affects in using the right data from the ignition delay time results (Figure
4.2). What this signalizes is that the temperature in the ignition simulations
follow close up to what the heat equation suggests alone, and is a major
reason for the accuracy of the simple model.

However, the small deviations in how fast Tm drops, could explain the
results for the 1D and 2D simulations, in that the simple model needs some-
what higher temperatures for ignition.
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Another simplification which is done in the simple model has to do with
the temperature distribution. As stated before, the simulation performed
in the simple model only models the center temperature of the distribu-
tion. The equation for the center temperature is obtained from the Gaussian
distribution together with the heat equation, as described in section 4.2.2.
Furthermore, a relation between the height and the radius of the Gaussian
temperature distribution, Tm(t) and rs0 in equation (4.17), was established
by the assumption that the area under the curve was constant. This relation
was needed in order to solve equation (4.9). But basically the quantity which
is really constant is the thermal energy of the temperature distribution. If
one had incorporated the conservation of energy in the simple model, the
specific heat and the density would have had to been included as functions
of temperature in equation (4.10), (4.11) and (4.12). Since they are not, the
relation between the height and the radius of the distribution will cause some
inaccuracy between the simple model and Pencil Code.

6.1.2.2 Advantages and disadvantages

The advantages of the simple model are its simplicity alongside with its
ability to reproduce the numerical calculations from the Pencil Code. For
this particular task, to find the temperature distribution which gives ignition,
it has proven itself powerful. The calculation power needed in the simple
model to obtain the results can easily be done on a personal computer and
are less time consuming than a method where all the physical equations of the
problem are solved on a large grid. This is especially true when simulations
in three dimensions are handled. Considering the results the simple model
has produced for the hydrogen-air system, there seems to be no reason why
it should not be able to predict the same accurate result for a more complex
mixture. If this is the case, it would be a very useful way of determining the
geometry of the necessary ignition source.

The disadvantage is that one needs external information about the ther-
mal diffusivity, α(T ), and the ignition delay time, τig(T ), for the particular
combustible mixture. In addition, a curve fitting analysis must be performed
to transform the data into a function which can be read by the model. Fur-
thermore, the model can only predict what it has been designed to predict
and does not give any other outputs.

6.2 MIE
The following section will mainly treat the results in Figure 5.4. This figure
shows the energy of the simulations in Figure 5.1, instead of Tmax. The energy
is calculated based on the initial temperature distribution, and since Tmax is
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minimized, for the given rs0 , the energy obtained will be the MIE. From
the figure one can see the three simulation sets in 1D, 2D and 3D obtained
from the Pencil Code in a log-log plot. How the energies in the different
dimensions are defined are shown in the upper left corner of Figure 5.4.

The three data sets show a large difference in energy; about an order of
magnitude. This has to do with what the energy represent for the different
dimensions. In the 1D case, the energy is given as [mJ/cm2] and actually
represent the energy necessary to heat up a plane of 1 cm2 with the width
of 2rs0 . The width, in the sense that rs0 is not a definite width, but a type
of standard deviation in a Gaussian distribution. The same goes for the 2D
results, which is given as [mJ/cm] and represents a cylinder with radius rs0

and the length of 1 cm. This means that the 1D and 2D cases are given
as two different types of energy densities. The 3D simulations on the other
hand represent the actual energy since it is given as [mJ] and is the energy
necessary to heat a sphere with a radius of rs0 .

From the figure it can be seen that the results in the different dimensions
have different slopes. In advance, one could have approximately anticipated
the energy dependency on rs0 as linear, quadratically and cubically, since the
volume goes as r3, the area as r2, and the length as just r. As rs0 changes in
the different cases, it would represent a change in the length, area or volume
for the different dimensions, which means that if the center temperature
where constant for the different radii, it would probably have been the case.
However, since the center temperature increases for lower radii, as shown in
Figure 5.1, it is believable that the energy dependencies will lie somewhat
lower than first indicated.

A power regression analysis of the energies as functions of rs0 can be seen
in Figure 5.4 and Table 5.1. In great deal, the analysis confirms the suspicion
above. Furthermore, the energy dependency on the radius in 3D, which is
r2.62

s0 , deviates more from a cubically dependency, than the other two deviates
from a quadratically and linear dependency. This relates to the fact that the
results in 3D demands higher increase in temperatures for low radii, than
what is the case for the 1D and 2D results. An other way to look at it, is by
equation (2.22), which shows the energy necessary to heat a sphere uniformly
to a desired temperature. From this equation it can be seen how the energy
depends on the temperature and the radius, and since it is shown in Figure
5.1 that the temperature is close to inversely proportional to the radius, it
is natural to believe that the overall dependency on the radius will lie lower
than a cubically one.

In Figure 5.5 the energy densities can be seen for each dimensionality.
They have been calculated to compare the different energies in the same
reference system, i.e. with the same energy unit, [mJ/cm3]. The energy
density values themselves do not provide much useful information, but when
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seen together they show certain trends. Since the radius dependency is taken
out of the equation, the energy densities amplify the other variables that
the energy depends on, such as specific heat, density and temperature. If
one compares Figure 5.5 and Figure 5.1, it can be seen that they share
much of the same characteristics. This leads to the conclusion that, except
from the radius of the temperature distribution, it is the dependency on the
temperature which has largest influence on the energy.

As mentioned, the 3D simulation with rs0 = 0.01 cm did not produce any
ignition and it could be speculated in that the reason is related to condition
(2.25) in section 2.5, which states that rf 1 3.7a, where a = α/SL is the
thermal width of the flame. This condition were obtained for a sphere with
radius rf , and if it is met, the layers just outside the initially ignited mix-
ture will have time to further ignite before the volume cools. If one inserts
the values from our system, one could get an indication of how small this
condition allows the radius to be. The value for the thermal diffusivity is
gained from Figure 4.1 and the laminar flame speed is obtained from a paper
by Dong et al. (2009) [15]. Dong et al. proposes that SL ' 170 cm/s in
a H2/air mixture. The value α ' 0.5 cm2/s is taken from Figure 4.1 at
a temperature equal to 300 K, since this is the ambient temperature. The
result then becomes rf & 0.011 cm. Straight forward this condition sug-
gests that no ignition should be expected where the sphere radius is equal
to 0.01 cm. However, it is more complicated since the heat source used here
is Gaussian distributed, and not an uniformly heated sphere with a well de-
fined transition. For a Gaussian distributed profile it would perhaps be more
correct to use a value for the thermal diffusivity which reflects a higher tem-
perature, since the outside layers of the temperature core would already be
heated additionally with respect to the ambient temperature. In that case,
the condition would impose a larger limit regarding the radius of the sphere.

Another plausible explanation could be that the reaction mechanism used
is not designed for such high temperatures which rs0 = 0.01 cm would imply.
According to the simple model a Tmax = 5640 K would be needed.

In Glassman et al. [3] the minimum ignition energy is stated to be equal
to 0.018 mJ for hydrogen. If one assumes that the curve fitting function in
3D for the Pencil Code results continue downwards, the MIE by Glassman
et al. would propose a rs0 of about 0.014 cm.

In experiments regarding the ignition energy, they are often conducted
by the use of an electrical spark to ignite the gas. The paper by Ono et
al. (2006) [12] showed the MIE to be equal to 0.017 mJ, which is close to
the one proposed by Glassman et al. It was shown that in order to produce
this MIE result, the gap distance was needed to be set equal to 0.5 mm.
The geometry of an electrical spark could be looked upon as a cylinder in
space and if one draws a parallel to this study, the results, in which would be
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equivalent to that geometry, is the 2D simulations. The gap distance would
be the length of the cylinder, thus would it be the height of the 2D cross
section. If one assumes that the radius of the spark is about 0.01 cm one
could take the result from the 2D simulation with rs0 = 0.01 cm, which is
about 0.3 mJ/cm, and multiply it with the gap distance of 0.05 cm. One
would then obtain the MIE for this imitated spark, which would be equal to
0.015 mJ. But sure enough, this result lies under the assumption that one
looks away from the endpoint of the cylinder. Since there would be heat
diffusion at the endpoints, it would be expected that the MIE would lie a bit
higher.

The two results from Maas et al. can also be seen in the figure. One
of them has cylindrical geometry and the second one has a spherical geome-
try. These numerical results are done for a stoichiometric hydrogen-oxygen
mixture and are compared with the Pencil Code results. The fact that the
Maas et al. simulations have lower energies could be explained in that it is
a hydrogen mixture in pure oxygen while the simulations in Pencil Code are
for a hydrogen-air mixture. The Maas et al. results also show energy values
for radii down towards rs0 = 0.003 cm. For these low radii, the 3D simulation
suggests a MIE which is much lower than the experimental results.

From the study by Kim et al. it is suggested a MIE of about 0.01 mJ
for rs0 = 0.01 cm. This value also seems to contradict the experimental MIE
values from Glassman et al. [3] and Ryo Ono et al. [12]. The fact that
the Pencil Code corresponds well with the experimental data, regarding the
MIE, is a good indication of the method’s credibility.
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Conclusion

In this thesis it has been shown by DNS with the Pencil Code that the ge-
ometry and shape of the heat source have a strong effect on ignition. The
heat source was modeled by a Gaussian temperature distribution and the
effect was seen when the dimensionality and size of the distribution was
altered. The 3D simulations with spherical geometry required higher tem-
peratures than the 2D simulations with cylindrical geometry. In addition,
the narrower the temperature distributions were, the higher the tempera-
tures needed to ignite the gaseous mixture became. This was mainly related
to the magnitude of which heat diffused away with the varying geometries.

A new ignition model, ”the simple model”, was proposed with the goal of
simplifying the physical elements included in the simulation while still pro-
ducing accurate results. The element on which the model was based was the
heat equation with input data from ignition delay time simulations. It has
been validated through simulations that the simple model accurately repli-
cated the results from the Pencil Code for the studied hydrogen-air mixture.

Regarding the MIE results, it was clear that it mainly depended on the
radius of the Gaussian temperature distribution. The MIE was lowest for
the lowest radii which gave ignition. Furthermore, it seemed to be a lower
limit of how small the radius could be for the different geometries. In 3D,
this limit reflected a MIE which agreed well with the experimental results.
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