
Python Krus

Advanced Python
By Peder Bergebakken Sundt

Programvareverstedet
www.pvv.ntnu.no

self.bio

● Peder Bergebakken Sundt
● 21 years old
● In my third year for a Master of Science in

Communication technology
● Worked with Python for ~9 years
● Hangs out on Programvareverkstedet on

Stripa on my spare time

This course

● This course with briefly touch upon many cool concepts in higher level
Python programming.

● We will mainly use vanilla Python 3 for these slides
● Many of these tricks and methods can be used in Python 2 as well
● Python 3 introduces the new print method, advanced unpacking, parameter

annotations and the yield from statement among many other things.
● You’re going to see the character “_” a lot.
● Please don’t be afraid to ask if you have any questions or didn’t quite catch

something.

The Interactive Interpreter

● The interactive interpreter runs Python
code one line at a time.

● Any returned value is printed out,
formatted using the repr() method

● The code on the left of this slide is how i’ll
display most of the examples

>>> i_return_a_value()

5

>>> 5

5

>>> None

>>> i_return_None()# None is the default return value

>>> 2 + 2

4

>>> "foobar"# return values are printed using repr()

'foobar'

>>> print("foobar")# print() formats using str()

foobar

Python is a parsed language

● Python allows dynamic behaviour making the language difficult to compile:
>>> print("length:", len("test"))

length: 4
>>> import builtins
>>> setattr(builtins, "len", lambda x: x.__len__() + 5)
>>> print("length:", len("test"))
length: 9

● We solve this by running it in an interpreter
● This is the major reason why many believe Python is slow
● This is not always the case, but many use it as a general rule of thumb

The Python parser and interpreter

The execution of Python code is divided into two steps:

1. Parse the source code and compile it into Python bytecode (usually stored
in *.pyc files or the __pycache__/ directory)

2. Execute the simplified bytecode in an interpreter (kinda like the Java VM
but not really)

This allows for some changes, optimizations and oddities to occur in both
stages

Oddities in the Python parser

● Python allows for expressions like
if 5 < myFunction() <= 10:

 doSomething()

● In a simpler language, 5 < 6 < 7 would be resolved into something like
True < 7, which is not what we want.

● Python notices a pattern here while parsing the code, and changes the
code from 5 < 6 < 7 into 5 < 6 and 6 < 7

● We can have some fun with this

Example: Some fun with the parser

>>> print(5 < 7 < 10)# 5 < 7 and 7 < 10

True

>>> print(2 < 5 > 2)# 2 < 5 and 5 > 2

True

>>> print("a" in "aa" in "aaa")# "a" in "aa" and "aa" in "aaa"

True

>>> print(not 7 == True is not False)# not 7 == True and True is not False

True

● A Python method can take in a unknown amount of arguments
● These come in the form of lists and dictionaries
● * denotes a list of positional arguments
● ** denotes a list of keyword arguments

>>> def myfunc(*args, **kwargs):

... print(args)

... print(kwargs)
>>> myfunc(1, 2, 3, 4, foo="bar", five=5)
(1, 2, 3, 4)
{'foo': 'bar', 'five': 5}

Variable function arguments

Advanced unpacking

● Python 2 had iterator unpacking:
>>> a, b, c = range(3)

>>> (a, c)
(0, 2)

● Python 3 introduces advanced unpacking using similar syntax to *args:
>>> a, *rest, b = range(10)

>>> (a, rest, b)
(0, [1, 2, 3, 4, 5, 6, 7, 8], 9)

Polymorphism in Python

● Everything in Python is an object (or at least a psuedo object)

○ Functions and classes are objects
○ Even True and False are objects
○ Even the code itself is an object!

● Python 1 introduced function names like __init__() and __str__() to give the
different types a common interface:

5 == 6 is interpreted as
(5).__eq__(6) by the python parser

● Python uses these methods behind the scenes when running code
● We can overload these!

How to view the contents of an object

>>> dir(5)#Lets look at the attributes the object 5 contains

['__abs__', '__add__', '__and__', '__bool__', '__ceil__', '__class__', '__delattr__',

'__dir__', '__divmod__', '__doc__', '__eq__', '__float__', '__floor__', '__floordiv__',

'__format__', '__ge__', '__getattribute__', '__getnewargs__', '__gt__', '__hash__',

'__index__', '__init__', '__init_subclass__', '__int__', '__invert__', '__le__',

'__lshift__', '__lt__', '__mod__', '__mul__', '__ne__', '__neg__', '__new__', '__or__',

'__pos__', '__pow__', '__radd__', '__rand__', '__rdivmod__', '__reduce__', '__reduce_ex__',

'__repr__', '__rfloordiv__', '__rlshift__', '__rmod__', '__rmul__', '__ror__', '__round__',

'__rpow__', '__rrshift__', '__rshift__', '__rsub__', '__rtruediv__', '__rxor__',

'__setattr__', '__sizeof__', '__str__', '__sub__', '__subclasshook__', '__truediv__',

'__trunc__', '__xor__', 'bit_length', 'conjugate', 'denominator', 'from_bytes', 'imag',

'numerator', 'real', 'to_bytes']

Type and attribute methods

● Python 1 defined a common interface
for objects to implement. This has been
built upon and extended since then.

● This convention is what allows us to make
our objects able to cooperate as well as
they do!

● if [1, 2]: print("The list has members")

is interpreted as
if [1, 2].__bool__(): print("The list has members")

myobject.__int__() == int (myobject)

myobject.__str__() == str (myobject)

myobject.__repr__() == repr(myobject)

myobject.__bool__() == bool(myobject)

myobject.__len__() == len (myobject)

myobject.__list__() == list(myobject)

myobject.__iter__() == iter(myobject)

Comparison operators

● When you compare two objects, Python
needs to know how to compare them.

● A least one of the two objects must
implement a comparison method for this
to work. This is a method which usually
returns either True or False

● ["a", "b"] > None

is interpreted as
["a", "b"].__gt__(None)

myobject.__lt__(self, other)#Less than

myobject.__le__(self, other)#Less than or equal

myobject.__eq__(self, other)#Equals

myobject.__ne__(self, other)#Not Equal

myobject.__gt__(self, other)#Greater than

myobject.__ge__(self, other)#Greater than or equal

Arithmetic operators

● Behaves the same way as comparison
operators, except they’re not expected
to return a boolean

● Right hand side counterparts exists as
well

● Operator precedence is handled by the
parser and can not be overridden

(as far as i know)

object.__add__ (self, other) == self + other

object.__sub__ (self, other) == self - other

object.__mul__ (self, other) == self * other

object.__matmul__ (self, other) == self @ other

object.__truediv__ (self, other) == self / other

object.__floordiv__(self, other) == self // other

object.__mod__ (self, other) == self % other

object.__pow__ (self, other) == self ** other

object.__lshift__ (self, other) == self << other

object.__rshift__ (self, other) == self >> other

object.__and__ (self, other) == self & other

object.__xor__ (self, other) == self ^ other

object.__or__ (self, other) == self | other

● Lists, dictionaries, sets, tuples, deques and
strings all use the same container
interface methods:

● a = myobject[5]

myobject["foo"] = "bar"

del myobject[5]

is interpreted as
a = myobject.__getitem__(5)

myobject.__setitem__("foo", "bar")

myobject.__delitem__(5)

Container methods

● Slicing was hacked in as an afterthought:

>>> class MyClass:
... def __getitem__(self, value):
... print(value)
>>> myobject = MyClass()
>>> myobject[3]
3
>>> myobject[3:4]
slice(3, 4, None)

Attribute handlers

● All objects must have an implementation
of __getattr__, __setattr__ and __delattr__

● Luckily you inherit a very good
implementation by default!

● Used whenever you access a member
attribute of an object:

print(myobject.foo)

is executed as
print(myobject.__getattr__("foo"))

● Similar interface to containers, but must
be implemented on all objects

>>> class AttributeDict(dict):

... __getattr__ = dict.__getitem__

... __setattr__ = dict.__setitem__

... __delattr__ = dict.__delitem__

>>> mydict = AttributeDict()

>>> mydict["foo"] = 5

>>> print(mydict.foo)

5

New style classes and objects

● The concept of a descriptor was
introduced late in Python 2.

● In general, a descriptor is an object
attribute whose access has been
overridden by methods.

● A descriptor is an object with __get__(),
__set__(), and __delete__() methods.

● You can easily make these using
property()

● In Python 2 you had to inherit “object” to
get the descriptor logic, while this
inheritance is implicit in Python 3.

● Object adds the __getattribute__,
__setattribute__ and __delattribute__
member functions which handle
descriptor logic before calling __getattr__,
__setattr__ and __delattr__
respectively.

Properties

>>> class MyClass:

... def foo():

... doc = "The foo property."

... def fget(self):

... return "The value of foo"

... def fset(self, value):

... print("foo was set to", value)

... def fdel(self):

... pass

... return locals()

... foo = property(**foo())

>>> myobject = MyClass()

>>> myobject.foo = 5

foo was set to 5

>>> print(myobject.foo)

The value of foo

>>> print(MyClass.foo.__doc__)

The foo property.

Simpler properties

>>> class MyClass:

... @property

... def foo(self):

... return input("What is foo? ")

... @foo.setter

... def foo(self, value):

... print("Foo was set to", value)

...

>>> myobject = MyClass()

>>> print(myobject.foo)

What is foo? Hello

Hello

>>> print(myobject.foo)

What is foo? World

World

>>> myobject.foo = 5

Foo was set to 5

Callables

● An object is a “callable” object if it implements the __call__ method

myobject(1, 2)

is executed as
myobject.__call__(1, 2)

● def handles this for you:

>>> def myfunc(): pass
>>> myfunc.__call__
<method-wrapper '__call__' of function object at 0x000000E4B2703E18>

Callable example

>>> class Funky:

... def __call__(self):

... print("Look at me, I work like a function!")

>>> f = Funky()

>>> f()

Look at me, I work like a function!

Lambda functions

● Callables are simply objects
● Because of this we can pass a

callable in as an argument to a
function

● The lambda statement
simplifies this, allowing you to
define callables inline:

>>> def double(value):
... return value + value
>>> def call(func):
... print('func("test") returns:', func("test"))
>>> call(double)
func("test") returns: testtest
>>> call(lambda x: x + x + x)
func("test") returns: testtesttest
>>> call(lambda x: 5)
func("test") returns: 5

Class descriptions

● When you define a class in Python, you’re in reality storing a callable
object, which produces instances of the class you described:

● MyClass.__call__(*args, **kwargs)

is a method which does: (somewhat simplified)

instance = MyClass.__new__(MyClass, *args, **kwargs)# The instance is constructed by __new__

instance.__init__(*args, **kwargs)# The newly constructed instance is initialized by __init__

return instance

Default __new__ constructor simplified

class MyClass:

 def __new__(cls, *args, **kwargs):

 self = object()#an empty object

 for attribute_name in dir(cls):

 attribute_value = getattr(cls, attribute)

 if type(attribute_value) is function:

 def instance_method(*args, **kwargs):

 return attribute_value(self, *args, **kwargs)

 setattr(self, instance_method)

 else:

 setattr(self, attribute_value)

 return self

Annotations

● A new feature introduced in Python 3.0, which has not been backported
● Used to annotate what types a function uses and returns

>>> def myfunc(a: int, b: str) -> list:
... assert type(a) is int
... assert type(b) is str
... #do something
>>> myfunc.__annotations__
{'a': <class 'int'>, 'b': <class 'str'>, 'return': <class 'list'>}

● Python does not enforce these in any way, mainly used for documentation
and better assistance from IDEs and linters

Decorators

● Functions are just callable objects
● We can make changes to these callable objects
● This we call “decorating” a function
● A “decorator” is simply a function that takes in a callable object as a

parameter and returns the decorated version of that callable object:

myfunc = mydecorator(myfunc)

Decorator syntax

● Python added syntactical sugar to make this more practical:

def myfunc(): pass

myfunc = mydecorator(myfunc)

can be written as
@mydecorator

def myfunc(): pass

● You can stack multiple decorators on a single function

Decorator example: HTML tag

>>> def with_b_tag(func):# a decorator

... def new_func(*args, **kwargs):

... return "" + func(*args, **kwargs) + ""

... return new_func

...

>>> @with_b_tag

... def hello_world():

... return "Hello, World!"

...

>>> print(hello_world())

Hello, World!

Decorator example: memoizer

>>> def memoize(func):# a decorator

... memory = {}

... def new_func(argument):

... if argument in memory:

... return memory[argument]

... else:

... value = func(argument)

... memory[argument] = value

... return value

... return new_func

...

>>> @memoize

... def fibonacci(n):

... if 0 <= n <= 1:

... return n

... return fibonacci(n-1) + fibonacci(n-2)

...

>>> print(fibonacci(200))

280571172992510140037611932413038677189525

● This saves a lot of runtime

Decorator example: logging

>>> def log(func):# a decorator

... def new_func(*args):

... print(func.__name__ + str(args))

... ret = func(*args)

... print(func.__name__, "returned:", ret)

... return ret

... return new_func

...

>>> @log

... def foo(value):

... return value.upper() + value.lower()

...

>>> @log

... def bar(value1, value2):

... return foo(value1)[::-1] + foo(value2)

...

>>> print("final result:", bar("Hello", "World"))

bar('Hello', 'World')

foo('Hello',)

foo returned: HELLOhello

foo('World',)

foo returned: WORLDworld

bar returned: ollehOLLEHWORLDworld

final result: ollehOLLEHWORLDworld

Decorators with parameters

● Decorators alone might seem a bit limiting
● Making a decorator for every single edge case is a lot of work
● We can solve this by “cheating” a little
● We can make a function which returns the decorator we want

○ In this course we’ll call them “decorator builders”, but they’re often just called decorators

● This function will be able to take in other parameters as well!

Decorator builder example:
Generic HTML tag
>>> def with_tag(tag):# a decorator builder

... def decorator(func):# a decorator

... def new_func(*args, **kwargs):

... return "<" + tag + ">" + func(*args, **kwargs) + "</" + tag + ">"

... return new_func

... return decorator

...

>>> @with_tag("b")

... @with_tag("i")

... def welcome(name):

... return "Hello, " + name.split()[0] + "!"

...

>>> print(welcome(input("Enter your name: ")))

Enter your name: Peder B. Sundt

<i>Hello, Peder!</i>

Decorator builder example: with_resource
def with_resource(filename):# a decorator builder

 with open(filename, "r") as f:

 file = f.read()

 def decorator(func):# a decorator

 def new_func(*args, **kwargs):

 return func(*args, file, **kwargs)

 return new_func

 return decorator

from flask import Flask# a popular library for web development

import time

app = Flask("My server name")

@app.route("/")

@with_resource("resources/frontpage_template.html")

def frontpage_get(request, template):

 date = time.strftime("%B %d, %Y")

 return template.format({"date": date})

>>> with open("my_file.txt", "r") as f:

... data = f.read()

>>> print(data)

I'm awesome!

● The with statement uses what we call a context manager
● Context managers are simply an object which implements the __enter__

and __exit__ methods.
● __enter__ is called at the start of the with block, optionally storing the

returned value as f.
● __exit__ is called when exiting the with block
● open() uses its __exit__ method to close the file.

Context Managers

Context manager example: HTML Tag

>>> class Tag:

... def __init__(self, tag):

... self.tag = tag

... def __enter__(self):

... print("<" + self.tag + ">")

... def __exit__(self, type, value, traceback):

... print("</" + self.tag + ">")

...

>>> with Tag("b"):

... print("This text is bold!")

This text is bold!

Context Manager example: Switch Case

>>> class switch():

... def __init__(self, key):

... self.key = key

... def __enter__(self):

... return self.case

... def __exit__(self, *args):

... pass

... def case(self, key):

... def decorator(func):

... if self.key == key:

... func()

... return func

... return decorator

...

>>> for key in (4, 5, 6):

... print("key is", key)

... with switch(key) as case:# the switch

... @case(4)

... def unimportant_name():

... print("foo")

... @case(5)

... @case(6)

... def unimportant_name():

... print("bar")

...

key is 4

foo

key is 5

bar

key is 6

bar

Metaclasses

● Metaclasses can be a controversial topic
● Some believe it overcomplicates the object model
● Whether you want to use them or not is up to you
● They present lots of interesting opportunities for reducing boilerplate and

make nicer APIs

What is a Metaclass?

>>> class MyClass: pass

>>> type(MyClass)

<class 'type'>

>>> myobject = MyClass()

>>> type(myobject)

<class '__main__.MyClass'>

>>> isinstance(myobject, MyClass)

True

>>> isinstance(MyClass, type)

True

● A metaclass is the parent of a class object
● All classes inherit the metaclass type by

default
● We can therefore make classes using

type instead of using the class
statement:

>>> MyClass = type('MyClass', (), {})

>>> MyClass

<class '__main__.MyClass'>

Using type instead of the class statement

>>> class Foo:

... x = 5

>>> class Bar(Foo):

... def get_x(self):

... return self.x

>>> mybar = Bar()

>>> mybar.get_x()

5

>>> Foo = type('Foo', (), dict(x=5))

>>> Bar = type('Bar', (Foo,), dict(get_x = lambda self: self.x))

>>> mybar = Bar()

>>> mybar.get_x()

5

● These two code snippets are (almost) identical:

Metaclasses are callable

● We can use type as a function to make classes
● The class statement does the same thing
● This means the class statement should accept any callable as a metaclass

>>> class MyClass(metaclass = print):

... pass

MyClass () {'__module__': '__main__', '__qualname__': 'MyClass'}

>>> print(MyClass)

None

Making your own metaclass

● Making your own metaclass is as simple as inheriting type:

>>> class MyMeta(type):

... pass

>>> class MyClass1(metaclass = MyMeta):

... pass

>>> type(MyClass1)

<class '__main__.MyMeta'>

>>> MyMeta("MyClass2", (), {})

<class '__main__.MyClass2'>

Iterables

● An terable object is in Python defined as “An object capable of returning its
members one at a time.”

● Most of Python considers an object to be iterable if it implements __iter__
● Lists, sets, dictionaries, deques, strings and bytearrays among many other

implements this interface.
● __iter__ is a method that returns an Iterator-like object
● The built in function iter(myobject) simply returns myobject.__iter__()

Iterators

>>> myiter = iter([1, 2, 3])

>>> myiter

<listiterator object at 0x7f855c944400>

>>> myiter.next()

1

>>> myiter.next()

2

>>> myiter.next()

3

>>> myiter.next()

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

StopIteration

● when we call myiter.next() the last time,
StopIteration is raised instead.

● This is how an iterator signals their end

● This means iterators can have an unknown length

Iterators

● for loops will exhaust iterators for you:

>>> for i in iter([1, 2, 3]): print(i, end=" ")

1 2 3

● for loops also call iter() for you

>>> class MyClass:

... def __iter__(self): pass

...

>>> for i in MyClass(): print(i)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: iter() returned non-iterator of type 'NoneType'

●

Generators

● Generators are a kind of iterator which
generates its values on-the-fly

● This is achieved by making
iter(mygenerator()).next() compute
the next value when called

● This can save a lot of memory and result
in some nifty speedups

● Python 3 changed the range method from
producing a list to producing a generator:

● Python 2:
>>> range(5)
[0, 1, 2, 3, 4]

● Python 3:
>>> range(5)
range(0, 5)
>>> list(range(5))
[0, 1, 2, 3, 4]

The yield statement

● yield allows you to make generators
with ease

● The yield statement resembles return
in many ways

● When yield is called, the value is
outputted and the function is halted until
next value is requested.

● return in a generator will raise a
StopIteration exception

>>> def mygenerator():

... yield 1

... print("Hello, World!")

... yield 2

... return 3

...

>>> for i in mygenerator(): print(i)

...

1

Hello, World!

2

The yield from statement

● The yield from was introduced
in Python 3.4

● yield from is used when you want to
pass along the result from an another
generator through your own generator

● yield from will return any value stored in
StopIteration

>>> def foo():

... yield 1

... yield 2

... return 3

>>> def bar():

... ret = yield from foo()

... print("foo returned:", ret)

>>> for i in bar(): print(i)

1

2

foo returned: 3

Generator example: execution order

>>> def foo():

... for _ in range(3):

... yield input("Write something: ")

... return "I was returned by foo()"

...

>>> def bar():

... ret = yield from foo()

... yield ret.upper()

...

>>> for i in bar():

... print("I got:", i)

Write something: Alice

I got: Alice

Write something: Bob

I got: Bob

Write something: Foobar

I got: Foobar

I got: I WAS RETURNED BY FOO()

AsyncIO

● AsyncIO is a module in the standard
library, introduced in Python 3.4

● The syntax was extended in Python 3.5 to
make it more intuitive

● It enables you to handle many different
input/output streams simultaneously
without resorting to threading

● To achieve this, AsyncIO runs a event loop
which schedules coroutines to run at
different times

● A coroutine is a glorified generator, which
yields control back to the event loop while
idle

Coroutines

● Coroutines are a language construct
designed for concurrent operation.

● They use the halting mechanic of
generators to allow for other code to run in
the meantime

● Coroutines in Python 3.4:
@asyncio.coroutine
def hello_world():
 yield from asyncio.sleep(1)

● Python 3.5 added async and await to
simplify this:
async def hello_world():
 await asyncio.sleep(1)

AsyncIO example:
scheduling and concurrency
>>> import asyncio

>>> async def coro_1():

... while True:

... await asyncio.sleep(1)

... print("coro_1")

...

>>> async def coro_2():

... await asyncio.sleep(0.5)

... while True:

... await asyncio.sleep(1)

... print("coro_2")

...

>>> event_loop = asyncio.get_event_loop()

>>> asyncio.ensure_future(coro_1())

>>> asyncio.ensure_future(coro_2())

>>> event_loop.run_forever()

coro_1

coro_2

coro_1

coro_2

coro_1

coro_2

coro_1

coro_2

AsyncIO example: return values

>>> import asyncio

>>> async def coro_sub():

... await asyncio.sleep(1)

... return 5

...

>>> async def coro_main():

... ret = await coro_sub()

... print("coro_sub returned", ret)

... return 10

...

>>> event_loop = asyncio.get_event_loop()

>>> event_loop.run_until_complete(coro_main())

coro_sub returned 5

10

AsyncIO example: web development

● A real code snippet I've written recently. Using sanic as the webserver, airspeed as the

templating engine and aiopg to interact with the database.

@app.route("/")

@outputs_html

@with_template("frontpage.vm")

async def GET_frontpage(request, template):

 session = await get_session(request)

 user = await database.get_user(session)

 return template.merge(locals())

Why use asyncio?

● It’s new, hip and cool, and built in

● It is way easier to develop and debug than other some of the
asynchronous frameworks

● It utilizes the available resources more efficiently than threading

● There is an ever growing library of asyncio modules,
capable of cooperating thanks to the common framework

Programvareverkstedet

● It’s at the second floor on Stripa by Adgangskontrollen.

● Need help learning or figuring out something programming related?
We’d love to help you out!

● We have a neat server room, computer terminals, a fun community with a
great pool of knowledge!

● Open for anyone to just come by, no obligations or duties required!

