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1 Notes on notation

To help avoid vertical figures, I use the notation E/F if E is an extension
to the field F . This is the same notation as Wikipedia uses. The author
hopes that this will not give arise to confusion regarding a potential factor
ring E/F . Hopefully it will be clear from the context what is meant. And to
further prevent confusion, I often instead write E is [some kind of] extension
to F .

2 Pronounciation guidelines

“Root” is pronounced /ôUt/.

3 Problem set 1

Let R be a commutative integral domain with unity in which for each pair
a, b ∈ R, gcd(a, b) exists. Let a, b, c ∈ R.

Exercise 11.1.1 Show that c(a, b) and (ca, cb) are associates.

Solution (with teaspoon) Let

d = gcd(a, b) and D = gcd(ca, cb).

This implies

d|a, d|b, D|ca, D|cb (definition of greatest common divisor).

Multiply with c to get
cd|ca and cd|cb.
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Then
cd|D,

because if cd divides ca and cb, it must also divide D which is the greatest
common divisor of ca and cb. Rewrite this as

D = cdu

for some u ∈ R. We have from above

Dx = ca and Dy = cb.

Substitute D = cdu and get

cdux = ca and cduy = cb.

In an integral domain, the cancellation law holds. [ab = ac, a 6= 0 ⇒ ab−ac =
0 ⇒ a(b − c) = 0 ⇒ a = 0 or b − c = 0 ⇒ b = c since we assumed a 6= 0.]
Cancel c and get

a = dux and b = duy ⇒ du|a and du|b.

Since du divides both a and b, it must also divide the greatest common
divisor of a and b, namely

d ⇒ du|d,

rewritten as
d = duv.

Cancel and get
1 = uv,

so u and v must be units. Then

(ca, cb) = D = cdu = c(a, b). (1)

[We use the shorthand = instead of ∼ for equalities where gcd is involved.]

Exercise 11.1.2 Show that if (a, b) = 1 and a|c and b|c, then ab|c.

Solution Multiply by b and a, respectively: ab|bc and ab|ac, so ab|(ac, bc)
by the definition of greatest common divisor.

(ac, bc) = c(a, b) (by (1))
= c (by assumption (a, b) = 1)

so ab|c.

Exercise 11.1.3 Show that if (a, b) = 1 and b|ac, then b|c.
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Solution c(a, b) = (ca, cb) = c. b|ac combined with b|cb (obvious) gives
b|(ca, cb) = c.

Exercise 11.3.2 Show that each of the rings Z[
√

2] and Z[
√
−2] is a (i)

Euclidean domain and (ii) UFD. (iii) Explain why in the UFD Z[
√

2], (5 +√
2)(2 −

√
2) = (11 − 7

√
2)(2 +

√
2) even though each of the factors is

irreducible.

Solution (i) Elements in Z[
√
±2] can be written as

{a + b
√
±2|a, b ∈ Z}.

Define the norm as
N(a + b

√
±2) = |a2 ∓ 2b2|.

It’s easy to show that

N((a + b
√
±2)(c + d

√
±2)) = N(a + b

√
±2)N(c + d

√
±2),

which is even true for a, b, c, d ∈ R.

For all a, b ∈ R, a, b 6= 0, there exists α, β ∈ Q such that

ab−1 = α + β
√

2

⇒ a = b(α + β
√

2). (2)

We want q, r such that a = bq + r, 0 ≤ r < a. We can find α0, β0 ∈ Z such
that

|α− α0| ≤
1
2

(3)

|β − β0| ≤
1
2
. (4)

From (2), (3) and (4) we get

a = b (α0 + β0

√
2)︸ ︷︷ ︸

q

+ b(α− α0) + b(β − β0)
√

2︸ ︷︷ ︸
r

Taking the norm:

N(r) = N(b) [(α− α0)2 − 2(β − β0)2]︸ ︷︷ ︸
H

.
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We get

H = | (α− α0)2︸ ︷︷ ︸
≤ 1

4

− 2(β − β0)2︸ ︷︷ ︸
≤ 1

2

]

H ≤ 1
4

+
1
2

< 1.

From this we conclude that r = 0, since r is a non-negative integer and
r < 1.

Same argumentation for Z[
√
−2].

(ii) We showed in (i) that the rings were Euclidean domains. Theorem 3.3
says that every Euclidean domain is a UFD. This again follows from theorem
2.1 (every PID is a UFD) and theorem 3.2 (every Euclidean domain is a PID).

(iii-1) First we find the units in Z[
√
−2]. We have

u ∈ Z[
√
−2] is a unit ⇔ N(u) = 1

where N : Z[
√
−2] → Z is the norm.

If u is a unit, there exists a v such that uv = 1. Then,

N(1) = N(u)N(v) ⇒ N(u) = 1.

We want to find a, b such that∣∣u(a− b
√
−2)

∣∣ = N(u) = 1.

We recall that the norm of Z[
√
−2] is defined by

N(a + b
√
−2) =

∣∣a2 − 2b2
∣∣ =

∣∣(a + b
√
−2)(a− b

√
−2)

∣∣ . (5)

We then get

u−1 = a− b
√
−2 or

u−1 = −(a− b
√
−2).

From this and (5) we get
u = a + b

√
−2

We see that the equation

N(u) = a2 + 2b2 = 1

only has the solutions a± 1.

(iii-2) Then, we wish to find the units in Z[
√

2]. The unit u can be expressed
as

u = a + b
√
−2
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satisfying
N(u) =

∣∣a2 − 2b2
∣∣ = 1.

We want to find a, b such that

a2 − 2b2 = 1,

this is Pell’s equation and it has infinitely many solutions. Thus, Z[
√

2] has
an infinite number of units.

(iii-3) The equality

(5 +
√

2)(2−
√

2) = (11− 7
√

2)(2 +
√

2)

holds, despite that the factors are irreducible in Z[
√

2]. The reason is that
the factors on each side differ by multiplication by a unit.

5 +
√

2 is irreducible because N(5 +
√

2) = 23 and

5 +
√

2 = (a + b
√

2)(c + d
√

2)

23 = N(5 +
√

2) = N(a + b
√

2)︸ ︷︷ ︸
=1

N(c + d
√

2)︸ ︷︷ ︸
or =1

.

Since the norm is a prime number, one on the factors must be a unit.

−1 +
√

2 is a unit in [
√

2]. Then, (−1 +
√

2)2 = (3− 2
√

2) is also a unit.

We have

(5 +
√

2) ∼ (11− 7
√

2)

and (2−
√

2) ∼ (2 +
√

2).

since for instance (2 +
√

2)(3− 2
√

2) = 2−
√

2.

Exercise 11.3.8 Show that Z[
√
−6] is not a Euclidean domain.

Solution Take the norm of an arbitrary element in the ring.

N(a + b
√
−6) = a2 + 6b2

where a, b ∈ Z. Units are ±1. We recall theorem 11.3.3 which says that every
Euclidean domain is a UFD. If we can show that Z[

√
−6] is not a UFD, we

are done.

Consider 6, it can be written as 6 = 2 ·3 =
√
−6 · (−

√
−6). We want to show

that all the factors are irreducible. We recall that an element is irreducible
if it is not a product of two non-units.

Show that 2 is an irreducible: Rewrite 2 as the product of two elements in
the ring.

2 = (a + b
√
−6)x,
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where x = (c + d
√
−6). Take the norm on both sides:

4 = N(2) = (a2 + 6b2)N(x)

The only possibilities for a, b such that (a2 + 6b2) is a non-unit are a = ±2
and b = 0, which leads to N(x) = 1, a unit. Hence 2 is irreducible. The
same kind of argumentation will lead to showing that 3 is an irreducible.

Show that
√
−6 is irreducible:

√
−6 = (a + b

√
−6)(x)

Take the norm on both sides:

6 = (a2 + 6b2)N(x)

The only possibilities for a, b are a = 0 and b = ±1, leading to N(x) = 1.
Hence

√
−6 is irreducible. Hence Z[

√
−6] is not an Euclidean domain, since

we don’t have unique factorization.

Exercise (Fermat) Prove that the diophantine equation y2 + 2 = x3 has
only the integer solutions y = ±5, x = 3. [Hint: Use that Z[

√
−2] is a

Euclidean domain with norm N(a + b
√
−2) = a2 + 2b2.]

Solution We have

y2 + 2 = (y +
√
−2)(y −

√
−2) = x3 UFD= (p1 · · · pn) = 3. (6)

Assume that gcd(y +
√

2, y −
√

2) = 1, which is easy to show.

From (6) we get
x3 = p3

1p
3
2 · · · p3

n

where pi is irreducible (but not necessarily distinct).

We can rewrite:

y +
√
−2 = q1 · · · qm = (pi1)

3 · · · (pij )
3 = z3

y −
√
−2 = s1 · · · st = (pk1)

3 · · · (pko)
3 = w3

where z, w ∈ Z[
√
−2]. qi 6= ±sl for i ∈ {1, 2, . . . ,m}, l ∈ {1, 2, . . . , t}, the

factors of x3 occur in each one of the two above. Take norms:

N(p)|N(2y) = 4y2 y is odd

Furthermore,

y +
√
−2 = z3

= (a + b
√
−2)3

= a3 + 3a2b
√
−2 + 3a(b

√
−2)2 + (b

√
−2)3

= a3 − 6ab2︸ ︷︷ ︸
=y

+(3a2b− 2b3︸ ︷︷ ︸
=1

√
−2.
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From 1 = b(3a2 − 2b2) we get b = 1 and a = ±1 and from this we get the
solutions

y = {−5, 5} ⇒ x = 3.

Show that gcd(y +
√

2, y −
√

2) = 1:

p|y +
√
−2 and

p|y −
√
−2

implies p = ±1 where p ∈ Z[
√
−2]. This in turn implies

p|2y and

p|2
√
−2

because p|a and p|b implies p|a + b and p|a− b.

4 Problem set 2

Exercise 15.1.2 Show that x4 + 8 ∈ Q[x] is irreducible over Q.

Solution First, a warning about a trap! We cannot use Eisenstein’s criterion
here. If we choose p = 2, we have p2|a0 and all conditions of Eisenstein’s
criterion are not fulfilled.

Let us assume that x4 + 8 is reducible, and exhaust all possibilities.

We make use of theorem 15.1.7 which states that a root must divide a0.
The candidates are ±1,±2,±4,±8. Also, Gauss’ lemma states that a root
of a polynomial over Q must reside in Z, that’s why all the candidates are
integers. By insertion we find that none of these candidates are roots. Hence
it must be a product of two polynomials of degree 2.

Lemma 15.1.6 says that if a polynomial is reducible over Q, then it is re-
ducible over Z. Then

x4 + 8 = (x2 + ax + b)(x2 + cx + d) (7)

where a, b, c, d ∈ Z. Multiply the factors to get

x4 + 8 = x4 + (a + c)x3 + (b + d + ac)x2 + (bc + ad)x + bd

By relating the coefficients on each side to each other we get this set of
equations:

a + c = 0
b + d + ac = 0

bc + ad = 0
bd = 8
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Assume that a 6= 0. Then c = −a. bc + ad = 0 leads to b = d. bd = 8 is
then the same as b2 = 8, which isn’t possible. So a = 0, hence c = 0.

Let’s examine the possibilities for b. Assume b 6= 0. Then d = −b and
−b2 = 8, a contradiction. Hence b = 0 which also leads to d = 0. But
then bd = 0 6= 8, a contradiction. Every case leads to a contradiction to the
assumption that x4 + 8 is reducible to (7), hence x4 + 8 is irreducible over
Q.

Exercise 15.1.4 Show that f(x) = x3 + ax2 + bx + 1 ∈ Z[x] is reducible
over Z if and only if either a = b or a + b = −2.

Solution If the polynomial is reducible, it can be written as

x3 + ax2 + bx + 1 = (x2 + cx + d)(x + e) = x3 + (e + c)x2 + (ce + d)x + ed

We immediately see that ed = 1. We then have two cases to examine.

e = d = 1 leads to 1 + c = a, 1 + c = b ⇒ a = b.

e = d = −1 leads to c− 1 = a,−c− 1 = b ⇒ a + b = −2.

Easier solution: Evaluate the polynomial with x = 1 and x = −1, the only
candidates for the linear factor, and relate a and b to each other.

We get:

f(1) = 1 + a + b + 1 ⇒ ab = −2
f(−1) = −1 + a− b− 1 ⇒ a = b

Exercise 15.1.6b Determine if x4 − 3x2 + 9 is irreducible over Q.

Solution If there is any root, the root will reside in Z, see theorem 15.1.7.
We have candidates ±1,±3 and ±9 for roots. By evaluating the polynomial
at x set to these candidates, we find that none of them are roots. Therefore,
if the polynomial is reducible, it will have two factors of degree 2. We equate

x4 − 3x2 + 9 = (x2 + ax + b)(x2 + cx + d)

= x4 + (a + c)x3 + (b + ac + d)x2 + (ad + bc)x + bd

From the above we get

a + c = 0
b + ac + d = −3

ad + bc = 0
bd = 9.
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Solving this we get

x4 − 3x2 + 9 = (1− 3x + 3)(1 + 3x + 3)

Apparently I am missing something, because the solution from the lecture
omitted the last details and concluded reducible at an earlier stage, not even
writing out the right hand side coefficients of the terms x2 and x.

Exercise 15.2.2 Show that x3 − 2 ∈ Q[x] is irreducible over Q. Find (if it
exists) an extension K of Q having all roots of x3− 2 such that [K : Q] = 6.

Solution x3 − 2 = 0 has three complex roots:

x1 = 3
√

2

x2 = ω
3
√

2

x3 = ω2 3
√

2,

where ω = e
2πi
3 and ω3 = 1.

K = Q(x1, x2, x3). ω is in K because x2
x1

= ω, so we can simplify: K =
Q( 3
√

2, ω).

So we have K = Q( 3
√

2, ω)/Q( 3
√

2)/Q and [Q( 3
√

2, ω) : Q( 3
√

2)] = 2 and the
basis is {1, ω}. The minimal polynomial of ω over Q( 3

√
2) is x2+x+1 = x3−1

x−1 .

[Q( 3
√

2) : Q] = 3 because the minimal polynomial of 3
√

2 over Q is x3 − 2.
The basis is {1, 3

√
2, ( 3
√

2)2}.

So,

[Q( 3
√

2), ω] : Q] = [Q( 3
√

2, ω) : Q( 3
√

2)][Q( 3
√

2) : Q] = 6.

Basis of K over Q is {1, 3
√

2, ( 3
√

2)2, ω, ω 3
√

2, ω( 3
√

2)2}.

Exercise 15.2.4 Find the smallest extension of Q having a root of x2 + 4 ∈
Q[x].

Solution The roots of x2 + 4 = 0 are x1 = 2i and x2 = −2i.

K = Q(x1, x2) = Q(i). The basis for K over Q is {1, i}.

Exercise 15.3.2 Prove that
√

2 and
√

3 are algebraic over Q. Find the
degree of

a) Q(
√

2) over Q.

b) Q(
√

3) over Q.

c) Q(
√

2,
√

3) over Q.
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d) Q(
√

2 +
√

3) over Q.

Solution
√

2 and
√

3 are algebraic over Q, since they are roots of polynomials
x2 − 2 and x2 − 3 ∈ Q[x].

(a) The basis is {1,
√

2}, so the dimension is 2.

(b) The basis is {1,
√

3}, so the dimension is 2.

(c) We have Q(
√

2,
√

3)/Q(
√

2)/Q. We know that [Q(
√

2) : Q] = 2, and we
need to find [Q(

√
2,
√

3) : Q(
√

2)]. It’s either 1 or 2, depending on whether√
3 ∈ Q(

√
2).

Does there exist a + b
√

2 such that
√

3 = a + b
√

2?
√

3 = a + b
√

2

3 = a2 + b2 + 2ab
√

2,

and since a2, b2 ∈ Q we must from the above have 2ab
√

2 ∈ Q ⇒
√

2 ∈ Q,
which is a contradiction.

If a = 0 or b = 0 we get 3 = b2 · 2 and we get the same kind of argument as
need to show that

√
2 is not rational, and it’s not necessary to prove this.

We are allowed to assume it’s known.

Hence,
√

3 /∈ Q(
√

2), so [Q(
√

2,
√

3) : Q(
√

2)] = 2, hence the degree of
Q(
√

2,
√

3) over Q is 4.

(d) It is clear that
√

2 +
√

3 ∈ Q(
√

2,
√

3).

If we can express both
√

2 and
√

3 by
√

2 +
√

3, we are done. Let

α =
√

2 +
√

3. (8)

Square and get
α2 = 2 + 3 + 2

√
6.

We see that
α2 − 5 = 2

√
6,

hence
√

6 ∈ Q(
√

2 +
√

3).

Multiply identity (8) with
√

6 and get

α
√

6 =
√

6
√

2 +
√

6
√

3 (9)

=
√

12 +
√

18 (10)

= 2
√

3 + 3
√

2 (11)

Combine (8) and (11) to get
√

6α− 2α =
√

2

3α−
√

6α =
√

3.
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We have now shown that
√

2,
√

3 ∈ Q(
√

2 +
√

3). Hence Q(
√

2 +
√

3) and
Q(
√

2,
√

3) are subfields of each other. From (c) we have that the degree of
Q(
√

2 +
√

3) over Q is 4.

Exercise 15.3.4 Find a suitable number a such that

a) Q(
√

2,
√

5) = Q(a).

b) Q(
√

3, i) = Q(a).

Solution (a) In general, see exercise 15.3.2 (d) for argumentation. The
solution is a =

√
2 +

√
5.

It’s obvious that Q(
√

2,
√

5) ⊇ Q(
√

2 +
√

5). Square a and get

a2 = 2 + 5 +
√

10 = 2 + 5 +
√

2
√

5.

And that concludes the contents of my notes for this exercise.

(b) The solution is a =
√

3 + i. It’s obvious that Q(
√

3, i) ⊇ Q(
√

3 + i).

Square and get
a2 = 3− 1− 2i

√
3.

Manipulate:

a(a2 − 2) = 6i + 2
√

3

a2 − 2 = 2i
√

3

We can then express
√

3 and i using a.

Exercise 15.3.6 If E is an extension field of F and [E : F ] is prime, prove
that there are no fields properly between E and F .

Solution Let K be a field between E and F , E/K/F . We also have that

[E : F ]︸ ︷︷ ︸
prime

= [E : K][K : F ]

.

Hence either [E : K] = 1 and K = E, or [K : F ] = 1 and K = F .

Exercise 15.3.10 Give an example of a field E containing a proper subfield
K such that E is embeddable in K and [E : K] is finite.

Solution The lecturer said that this exercise was unreasonable or something
like that.
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We have E/K and an embedding σ : E 7→ K such that

E = Q(x) =
f(x)
g(x)

f(x), g(x) ∈ Q[x]

K = Q(x2 = y) =
h(y)
k(y)

h(y), k(y) ∈ Q[y]

[E : K] = 2, since x is a root of z2 − y ∈ K[z].

x → y(= x2)
Q → Q (id)

⇓
E → K

f(x)
g(x)

→ f(y)
g(y)

(y = x2)

5 Problem set 3

Exercise 16.1.2 Construct a splitting field E for x3 + x + 1 ∈ Z/(2)[x] and
list all its elements.

Solution By trying the candidate roots 0 and 1, we find that f(x) = x3 +
x + 1 ∈ Z/(2)[x] is irreducible. Let α be a root of f(x). Then x − α is a
divisor of x3 + x + 1 in E[x].

α + α = 0, so α = −α, because the splitting field E is a vector space over
Z2.

Since α is a root, (x−α) = (x+α) divides x3+x+1. Perform the polynomial
division and we get the other factor x2 + αx + (α2 + 1).

We try to guess another root: α2. Show that α2 is a root of (x2+αx+α2+1):
Substitute x with α2 and get α4 + α3 + α2 + 1. Knowing that α3 + 1 = α
(which is true since α is a root of x3+x+1 ∈ Z2[x], and also that α4+α = α2

(by multiplying the previous equation with α)), it evaluates to 0 and hence
α2 is a root.

To find the last root, divide x2 + αx + (α2 + 1) by (x + α2). This yields a
root of α2 + α.
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Z2(α) has basis {1, α, α2}, so elements are of the form e(∈ E) = a+bα+cα2,
with a, b, c ∈ Z2. The elements are:

0 α2

1 α2 + 1
α α2 + α
α + 1 α2 + α + 1.

E = Z2(α) is a field extension of F = Z2 with [E : F ] = 4, and |E| = [E :
F ]|F | = 4 · 2 = 8.

Exercise 16.1.5 Let E be the splitting field of a polynomial of degree n
over a field F . Show that [E : F ] ≤ n!.

Solution Let f(x) ∈ F [x], f(x) = anxn + · · ·+a1x+a0. The degree of f(x)
is n. Let α be a root of f(x). We have

[F (α) : F ] ≤ n

which is identical to the degree of the minimal polynomial p(x) of α over F .
p(x) is a divisor of f(x).

This implies that deg(p(x)) ≤ deg(f(x)) = n. Rewrite f(x) as

f(x) = (x− α)f1(x).

We have deg(f1(x)) = n−1. β is a root of f1(x) and [F (α, β) : F (α)] ≤ n−1.
Repeat the argument until we end up with a degree 1 polynomial. By then,
E = F (α, β, · · · ) (F adjoined with all roots of f(x)) will therefore be the
splitting field of f(x). By multiplying the dimensions using the product rule,
we get that [E : F ] ≤ n!.

Exercise 16.1.7 If an irreducible polynomial p(x) over a field F has one
root in a splitting field E of a polynomial f(x) ∈ F [x], then p(x) has all its
roots in E.

Solution Follows immediately from theorem 16.2.1: Condition (ii) is ful-
filled, since E is the splitting field of the family (f(x)) of polynomials in
F [x]. This condition is equivalent to condition (i), which states that every
irreducible polynomial in F [x] that has a root in E splits into linear factors in
E. The assumption in the problem is that we have an irreducible polynomial
p(x) over a field F which has one root in a splitting field E of a polynomial
f(x) ∈ F [x], Hence E is the splitting field of p(x) over F .

There is also a solution in the back of the book, which pretty much uses the
same method as in the proof of theorem 16.2.1. Regarding that proof, we
recall from Algebra that if F is a finite field with p elements, F [x]/(p(x)) is
a finite field with pn elements where p(x) is irreducible and deg(p(x)) = n,
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and F [x]/(p(x)) ' F (α) where α is a root of p(x) = 0 in some extension of
F .

Exercise 16.1.8 Show that over any field K ⊃ Q the polynomial x3−3x+1
is either irreducible or splits into linear factors.

Solution The lecturer wasn’t able to find the answer to this exercise. Here’s
the beginning of a potential solution.

x3 − 3x + 1 = (x− α)(x− β)(x− γ)

= x3 + (−α− β − γ)x2 + (αβ + αγ + βγ)x− αβγ

Relate the coefficients of x of both sides:

−α− β − γ = 0
αβ + βγ + αγ = −3

−αβγ = 1

The question remains: can we express β and γ in terms of α?

Exercise 16.1.9 Let f(x) = x4 − 2x2 − 2 ∈ Q[x]. Find the roots α, β of
f(x) such that

Q(α) ' Q(β).

What is the splitting field of f(x)?

Solution f(x) is irreducible, due to Eisenstein’s criterion with p = 2. Let α
and β be the two roots. Since f(x) is irreducible, it is the minimal polynomial
of both α and β over Q, and we have

F (α) ' F [x]/(f(x)) ' F (β).

Let σ : F (α) 7→ F (β). Then, σ(α) = β and σ(a) = a for any a ∈ F .

x2 = 1±
√

3

x = ±
√

1 +±
√

3

β =
√

1 +
√

3 ∈ R, so Q(β) ⊆ R.

α =
√

1−
√

3 /∈ R, so the splitting field E of f(x) = x4 − 2x2 − 2 is equal
to E = Q(α, β).

[Q(β) : Q] = 4. We seek [Q(α, β) : Q(β)].

β2 = 1 +
√

3, and
√

3 ∈ Q(β).

The minimal polynomial of α over Q(β) is

x2 − (1−
√

3) ∈ Q(β)[x].
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Therefore, [Q(α, β]) : Q(β)] = 2. So [Q(α, β) : Q] = 8.

Exercise 16.2.2 Is R(
√
−5) normal over R?

Solution Yes, since R(
√
−5) is the splitting field of x2 + 5, and hence (by

definition) it is a normal extension, since it is the splitting of a family of
polymomials, namely the family consisting of x2 + 5.

Exercise 16.2.3 Let E be a normal extension of F and let K be a subfield
of E containing F . Show that E is a normal extension over K. Give an
example to show that K need not be a normal extension of F .

Solution E is the splitting field of some polynomial over F , and hence the
splitting field of the same polynomial considered as a polynomial over K.

Example: Let F = Q,K = Q(21/3), E = Q(21/3, 21/3ω, 21/3ω2), where ω =
ei 2π

3 . The minimal polynomial of K over Q is x3 − 2. K is not a splitting
field of x3 − 2 over Q, since K doesn’t contain all the roots.

Exercise 16.2.4 Let F = Q(
√

2) and E = Q( 4
√

2). Show that E is a normal
extension of F , F is a normal extension of Q, but E is not a normal extension
of Q.

Solution
√

2 is a root of the polynomial x2 − 2 over Q, and F obviously
contains all the roots of this polynomial. 21/4 is a root of the polynomial
x2 −

√
2 over F , and E obviously1 contains all the roots of this polynomial.

But E is not a normal extension of Q since the minimal polynomial x4 − 2
over Q has roots in C.

Exercise 16.2.7 Show that the field generated by a root of x3 − x− 1 over
Q is not normal over Q.

Solution According to theorem 42, x3−x− 1 has a real root. Furthermore,
x3−x−1 has only one real root (not shown, but see exercises 16.1.3-4). Let
α be the real root. Hence Q(α) is not a normal extension, since it doesn’t
contain all of the roots of x3 − x− 1 over Q.

Exercise 16.2.8 Find the smallest normal extension (up to isomorphism)
of Q(21/4) in Q̄ (the algebraic closure of Q).

Solution The smallest normal extension of Q(21/4) is Q adjoined all the
roots of the minimal polynomial x4−2 of 21/4 over Q. The missing roots are
±i21/4, hence the smallest normal extension of Q(21/4) is Q(21/4, i21/4) =
Q(21/4, i).

Exercise 16.2.11 Let E ⊂ F̄ and K ⊂ F̄ be normal extensions of a field
F . Show that the subfield L generated by E and K is also normal over F .

1Exercise: Is this obviously obvious?
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Solution Since E is normal over F , it is the splitting field of some poly-
nomial fE(x) over F ; similarly, K is the splitting field of fK(x). Let
α1, . . . , αn be the roots of fE(x) and β1, . . . , βm the roots of fK(x). Then
E = F (α1, . . . , αn) and K = F (β1, . . . , βn), so L = F (α1, . . . , αn, β1, . . . , βn)
and thus L is the splitting field of fE(x)fK(x).

6 Problem set 4

Exercise 16.3.4 Let f(x) be a polynomial of degree n over a field F of
characteristic p. Suppose f ′(x) = 0. Show that p|n and that f(x) has at
most n/p distinct roots.

Solution We have

f(x) = an︸︷︷︸
6=0

xn + an−1x
n−1 + · · ·+ a1x + a0

f ′(x) = nan︸︷︷︸
=0

xn−1 + · · ·+ 2a2x + a1 = 0,

because f ′(x) = 0 and characteristic p of F forces p|n. If p didn’t divide
n, we would have nan 6= 0 (which causes f ′(x) 6= 0, which is absurd) or
an = p = 0 (which causes deg(f(x)) < n, which is absurd).

Hence iai = 0 for all 0 < i ≤ n such that p|i, and ai = 0 for all 0 < i < n
such that p doesn’t divide i. Hence

f(x) = anxn + an−px
n−p + an−2px

n−2p + · · ·+ a2px
2p + apx

p + a0.

According to corollary 16.3.5 (whose proof I’ve pretty much repeated above),
we have f(x) = g(xp) for some g(y) ∈ F [y]. The degree of g(x) is n

p . Let
f(x) = g(xp) = 0. g(y) = 0 has at most n

p distinct roots. Let α be one of
these roots, i.e. g(α) = 0 and y = xp = α. Let ap

1 = α and ap
2 = α be two

roots of xp = α. Manipulate:

(a1 − a2)p = (*)
ap

1 − ap
2

⇒ a1 = a2.

Therefore xp = a has only one distinct root. [In (*) we made use of the fact
that in Zp, (where p is a prime number), (a± p)p = ap ± bp, since all other
terms are divisible by p.] So 0 = f(β) = g(βp), βp = α for some root in
g(y) = 0. Since β is uniquely determined by α, we get that f(x) can have
at most n

p distinct roots.
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Exercise 16.4.1 If F is a finite field of characteristic p, show that each
element a of F has a unique pth root p

√
a in F .

Solution Use the Frobenius automorphism, φ : F → F , φ(x) = xp. Since φ
is a bijection, there exists a β ∈ F such that φ(β) = βp = α. Let β1 and β2

be two β’s such that φ(β) = a. We have

βp
1 = a, βp

2 = a

(β1 − β2)p = βp
1 − βp

2 = 0 ⇒ β1 = β2.

Hence β is unique.

Exercise 16.4.2 Construct fields with 4, 8, 9, and 16 elements.

Solution In general, we can construct a field with pn elements where p
is a prime number and n ≥ 1 ∈ N, if we have an irredicuble polynomial
f(x) ∈ Zp[x] of degree n. The field with pn elements is then the factor field
Zp[x]/(f(x)) = GF (pn). f(x) can easily be found by brute force, if both p
and n are small. If n < 4 we only need to make sure that f(x) has no roots
in Zp. For n = 4 and n = 5 we also need to make sure that no polynomial
of degree 2 divides f(x).

4 elements: f(x) = x2 + x + 1 ∈ Z2[x], GF (22) = Z2[x]/(x2 + x + 1).

8 elements: f(x) = x3 + x + 1 ∈ Z2[x], GF (23) = Z2[x]/(x3 + x + 1).

9 elements: f(x) = x2 + 1 ∈ Z3[x], GF (32) = Z3[x]/(x2 + 1).

16 elements: f(x) = x4 +x+1 ∈ Z2[x], GF (24) = Z2[x]/(x4 +x+1). TODO
verify that f(x) is irreducible. The one from my notes was wrong.

What do the elements look like? For instance, GF (22) = {a + bα|a, b ∈ Z2},
where α is a root of x2 + x + 1. In order to multiply two elements and get
rid of α2 and α’s of higher degree, repeatedly apply the identity α2 = α + 1
derived from the irreducible polynomial.

Exercise 16.4.3 Find generators for the multiplicative groups of fields with
8, 13 and 17 elements.

Solution GF (23) − {0} = GF (23)∗, |GF (23)∗| = 7. Since the order of the
group is a prime, every element (except identity) is a generator.

|GF (13)∗| = 12: Find generator by trial and error. Find an element a ∈
GF (13)∗ such that all of a, a2, a3, · · · , a12 are distinct. a = 2 is a generator.
It is actually enough to check that a4 6= 1 and a6 6= 1. In general, for each
prime p ≤

√
|G| that divides |G| (where G is our multiplicative group), it is

enough to check that a|G|/p 6= 1. (TODO verify if this is correct.)

|GF (17)∗| = 16: Find a such that a8 6= 1. a = 2 is a generator.
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Exercise 16.4.4 Find generators for the group of automorphisms of fields
with 4, 8, 9, and 16 elements.

Solution These are Frobenius automorphisms. The generators φ for each
group are given below.

4: F = GF (22), φ : F 7→ F , φ(x) = x2.

8: F = GF (23), φ : F 7→ F , φ(x) = x2.

16: F = GF (24), φ : F 7→ F , φ(x) = x2.

9: F = GF (32), φ : F 7→ F , φ(x) = x3.

It seems that for F = GF (pn) and φ : F 7→ F , the generator is φ(x) = xp.

Exercise 16.4.7 Prove that in any finite field any element can be written
as the sum of two squares.

Solution Assume that char(F ) 6= 2, that is, |F | = pn, p 6= 2. Let a 6= 0 ∈ F ,
and

A = {a− x2|x ∈ F}, and

B = {y2|y ∈ F}.

We have

|A| =
⌊
|F |+ 1

2

⌋
, and

|B| =
⌊
|F |+ 1

2

⌋
.

This implies that A ∩B 6= ∅.

Hence, for arbitrarily chosen a 6= 0 ∈ F , there exists x, y ∈ F such that
a− x2 = y2, or x2 + y2 = a.

For char(F ) = 2, we have for all x ∈ F, x = x2 = x2 + 02.

Exercise 16.4.8 If F is a finite field, then H ∪ {0} is a subfield of F for
each subgroup H of the multiplicative group F ∗ if and only if |F ∗| either 1
or prime of the form 2n − 1, where n is a positive integer.

Solution (not from lecture) ⇒: Assume char(F ) = p > 2 and p prime.
We want to conclude that char(F ) can’t be > 2. F is finite, so |F | = pn

for some integer n ≥ 1. Then |F ∗| = pn − 1. We know that H ∪ {0} is a
subfield of F if |H ∪ {0}| = pk for some k such that k|n, and we also have
pk|pn. Assume that k|n ⇒ pk − 1|pn − 1. TODO try to arrive at some kind
of contradiction.
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Hence pk−1 doesn’t divide pn−1 for arbitrary p > 2 prime, n and k such that
k|n, hence H can’t be a subgroup of F ∗. Hence we can’t have char(F ) > 2.
char(F ) 6= 0, since F is a finite field (Theorem 16.4.2). Hence char(F ) = 2.

Claim: H ⊂ F ∗ implies H = {0} or H = F ∗:

Assume |H| = 2k − 1 and k|n. We get

2n − 1 = (2k − 1)(2l − 1)

= 2k+l − 2k − 2l − 1

Add 1 to both sides and get

2n = 2(2k+l−1 − 2l−1 − 2k−1 + 1)

which is absurd unless k = 1 or l = 1. Hence |F ∗| = 2n−1 is a prime number
or |F ∗| = 1. Hence F ∗ has only the trivial subgroups H = {0} and H = F ∗

(since we must have that |H| divides |F ∗|).

⇐: Assume that for a finite field F , |F ∗| is either 1 or a prime of the
form 2n − 1. We wish to show that for every subgroup H of F ∗, H ∪ {0}
is a subfield of F . F ∗ has only trivial subgroups, and the corresponding
candidates for subfields are H ∪ {0} ' Z2 and F itself, which are obviously
subfields. Hence H ∪ {0} is a subfield for each subgroup H of F ∗ and hence
the proof is finished.

TODO verify that this is correct, especially the first half.

Exercise 16.4.10 Without actually computing, find the number of irre-
ducible polynomials of (i) degree 2 and (ii) degree 3 over each of the fields
Z3 and Z5.

Solution (detailed) Our method is to calculate the number of reducible
polynomials, and subtract that amount from the total number of polyno-
mials. We make it easier on ourselves by calculating the number of monic
polynomials, since we can afterwards multiply with 2 or 4 (to get the number
of desired polynomials over Z3 and Z5, respectively).

(i) x2 + ax + b ∈ Z3[x]. Altogether there are 32 = 9 monic polynomials of
degree 2 over Z3. The number of reducible monic polynomials of degree 2
are:

• 3, the number of polynomials such that all the roots are equal.

•
(
3
2

)
= 3, the number of polynomials with distinct roots.

Hence, there are 2 · (9− 3− 3) = 6 irreducible polynomials of degree 2 over
Z3.
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x3 + ax2 + bx + c ∈ Z3[x]: Altogether there are 33 = 27 monic polynomials
of degree 3 over Z3. The number of reducible monic polynomials of degree
3 are:

• 3 · 3 = 9 ways of factoring into irreducible polynomials of degree 1 and
2. There are 3 possible of each. We know from the previous part that
there are 3 monic irreducible polynomials of degree 2.

• 3, the number of polynomials such that all the roots are equal.

• 2 ·
(
3
2

)
= 6, the number of polynomials with two distinct roots, one

of them appearing twice. Any two of these distinct roots can appear
twice, so we multiply by 2.

•
(
3
3

)
= 1, the number of polynomials with three distinct roots.

Hence, there are 2 ·(27−9−3−6−1) = 16 irreducible polynomials of degree
3 over Z3.

(ii) Same as (i), but over Z5. There are 52 = 25 monic polynomials of degree
2 over Z5. The number of reducible monic polynomials of degree 2 are:

• 5, the number of polynomials such that all the roots are equal.

•
(
5
2

)
= 10, the number of polynomials with disticts roots.

Hence, there are 4 · (25 − 5 − 10) = 40 irreducible polynomials of degree 2
over Z5.

x3 + ax2 + bx + c ∈ Z5[x]: Altogether there are 53 = 125 monic polynomials
of degree 3 over Z5. The number of reducible monic polynomials of degree
3 are:

• 5 · 10 = 50 ways of factoring into irreducible polynomials of degree 1
and 2. There are 5 possible irreducible polynomials of degree 1, and
from above we have that there are 10 monic (40 when we don’t require
monic) irreducible polynomials of degree 2 over Z5.

• 5, the number of polynomials such that all the roots are equal.

•
(
5
2

)
· 2 = 20, the number of polynomials with two distinct roots, one of

them appearing twice.

•
(
5
3

)
= 10, the number of polynomials with distinct roots.

Hence, there are 4 · (125 − 50 − 5 − 20 − 10) = 160 irreducible polynomials
of degree 3 over Z5.

These answers are verified to be correct by a computer program that evalu-
ates every possible relevant polynomial. Beware of bugs in the above code;
I have only tested it, not proven it correct.
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One can argue whether we have solved this exercise without computing, but
the above method is approved by the lecturer. Hence, this method accom-
panied with a correct answer will yield full score on the exam.

Exercise 16.5.2 Find θ 6=
√

3 +
√

5 such that Q(
√

3,
√

5) = Q(θ).

Solution Not shown in the lecture, I think. θ can be found using the method
in the proof of theorem 16.5.2. TODO do it. Just choose θ =

√
3−

√
5?

Exercise 16.5.5 Prove that a finite extension of a finite field is separable.

Solution Let α ∈ E, and let p(x) ∈ F [x] be the minimal polynomial of α
over F . p(x) = 0 has only distict roots (proved earlier, see the definition
of separable), hence by definition p(x) is separable. Hence E is a separable
extension of F .

Textbook solution Let F be a field with pm elements and E be an extension
with F having pn elements. Then E = F (α) where α ∈ E (corollary 16.4.7)
and so f(x) = xpn − x, f(α) = 0. This implies that α is a separable element
(because of theorem 16.3.3, since f ′(x) = −1 6= 0), and hence F (α) is a
separable extension of F .

Exercise 16.5.6 Prove that every extension of Q is separable.

Solution This follows immediately from one of the definitions of separable.
If p(x) ∈ Q[x] is the minimal polynomial of an arbitrary element α ∈ E over
Q, p(x) = 0 has only distict roots, then, by definition E is separable.

Exercise 16.5.7 Let α be a root of xp−x−1 over a field F of characteristic
p. Show that F (α) is a separable extension of F .

Solution f ′(x) = −1 6= 0 for all x. Hence f(x) is a separable polynomial
(theorem 16.3.3).

Theorem (unproven): Let F (α) be an extension to F . If α is separable
element of F , then F (α) is a separable extension of F .

We recall that given a field F and an extension F (α), an element α is sepa-
rable if the minimal polynomial of α over F is separable (has distinct roots).

If p(x) ∈ F [x] is the minimal polynomial of α over F , then p(x)|xp − x − 1
in F [x]. Hence p(x) has distinct roots. Hence F (α) is a separable extension
of F .

7 Problemset 5 (Exam 2004)

I was rather sleepy during this lecture, so some solutions can be incomplete
or messy. Also, the solution to problem 3 b) uses Sylow theory, which not
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every student has learned (only those who took MA2201).

Problem 1 a) Prove that if D is a domain that is not a field, then D[x] is
not a Euclidean domain.

Solution Theorem 11.3.2 and theorem 11.3.3 says that every Euclidean do-
main is a PID and UFD. so it suffices to show that D[x] isn’t PID or UFD.
We recall that D is a PID (principal ideal domain) if every ideal in D is of
the form (a) = aD for some a ∈ D.

D[x] is not a PID: Let a ∈ D such that a−1 /∈ D. The ideal (a, x) =
(a) + (x) = ar + xs for r, s ∈ D is not principal, since it’s generated by the
two elements a and x.

Problem 1 b) Show that 3 is irreducible, but not prime, in the integral
domain Z[

√
−5].

Solution Units in Z(
√
−5) are ±1. We have

3 = (a + b
√
−5)(c + d

√
−5).

Take the norm on both sides and get

9 = (a2 + 5b2)(c2 + 5d2).

Candidates for a, b, c, d are

b = d = 0 ⇒ a = ±1 or c = ±1,

or

b = ±1, a = ±2 ⇒ d = 0, c = ±1.

Either way, one of the terms on the right side is forced to be a unit.

9 = (2 +
√
−5)(2 −

√
−5), and 3|9. If we can show that 3 doesn’t divide

2±
√

5, then 3 is not a prime. We recall that a is a prime if a is not a unit
and a|bc ⇒ a|b or a|c.

Assume that 3|2±
√
−5. We have

2±
√
−5 = 3(a + b

√
−5)

for some a, b ∈ Z. Take the norm:

9 = 9(a2 + 5b2),

the only possibilities are b = 0 and a = ±1. We get

2±
√
−5 = ±3,
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an impossibility. Hence we have reached a contradiction to the assumption
that 3|2±

√
−5. Hence 3 is irreducible, but not prime.

Problem 2 a) Determine the Galois group of x3 − 7 ∈ Q[x] over Q.

Solution Let E = Q( 3
√

7, ω), ω = e
2πi
7 . Q( 3

√
7) is an extension of Q. We

have [Q( 3
√

7) : Q] = 3 since the minimal polynomial of 3
√

7 over Q is x3 − 7.
ω /∈ Q( 3

√
7), so Q( 3

√
7, ω) 6= Q( 3

√
7). The minimal polynomial of ω over

Q( 3
√

7) is x3−1
x−1 = x2 + x + 1 ∈ Q( 3

√
7). Hence [E : Q] = 6. The group

G(E|Q) ' S3 is the permutation of the roots.

Problem 2 b) Let E determine the splitting field of x3 − 7 over Q. How
many intermediate fields F (Q ⊂ F ⊂ E), such that [F : Q] = 2, are there?
Give reasons.

Solution |G(E|F )| = [E : F ] = 3. We wish to find H ⊂ S3 such that
|H| = 3. H = {id, (123), (132)}. H / S3 (H is a normal subgroup of S3.)
This implies that F is unique.

Assume [F : Q] = 3, [E : F ] = 2. F ⇔ H < S3, |H| = 2. H =
{(12), (13), (23)}. The number of such F ’s are 3. Why on earth do we
assume [F : Q] = 3? This contradicts with what the problem asks for.

Problem 3 Let p be a prime. Let E be the splitting field of xp − 1 ∈ Q[x]
over Q.

a) Prove that G(E/Q) is abelian of order p− 1.

Solution Let α 6= 1 be a root. Consider αq. (αq)p−1 = (αp)q−1 = 1q−1 =
0, so αq is a root. E = Q(α). H = {α, α2, . . . , αp−2} is a basis for E over Q.
Hence |G(E|Q)| = p− 1.

φ ∈ G(E|Q). φ(α) = αr, 1 ≤ r ≤ p− 1.

Show that φ is commutative:

φ1, φ2 ∈ G(E|Q). φ1(α) = αr, φ2(α) = αs.

φ1 ◦ φ2(α) = φ1(φ2(α))
= φ1(αs)
= φ1(α) · · ·φ1(α)︸ ︷︷ ︸

s times

= αrs.
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The other way round:

φ2 ◦ φ1(α) = φ2(φ1(α))
= φ2(αr)
= φ2(α) · · ·φ2(α)︸ ︷︷ ︸

r times

= αsr.

Hence we have φ1 ◦ φ2 = φ2 ◦ φ1, and hence G(E|Q) is commutative.

[φ is a homomorphism (isomorphism), so φ(a)φ(b) = φ(ab), allowing the step
φ(αr) = φ(α) · · ·φ(α)︸ ︷︷ ︸

r times

.]

b) Let ω = e
2πi
31 . Prove that there exists a subfield F of C such that [F (ω) :

F ] = 5.

Solution We have extensions C/F (ω)/F/Q. We wish to find F such that
[F (ω) : F ] = 5.

F (ω) = C(ω) is the splitting field of x31 − 1 ∈ Q[x]. G(E|Q) is abelian.
|G(E|Q)| = [E : Q] = 30. Sylow’s main theorem says that for a prime
number p, if pk||G|, then G has a subgroup of order pk for some k ≥ 1 ∈ Z.
By applying this theorem with p = 5, |G| = 30, k = 1 we find that G(E|Q)
has a subgroup of order 5. By the main theorem of Galois theory, then there
exists a field F such that [F (ω) : F ] = 5.

Problem 4 a) Let F be a field of characteristic p, where 0 < p 6= 3. Let α
be a root of f(x) = xp − x + 3 ∈ F [x] that lies in F . Show that f(x) has p
distinct roots in F . [HINT: Show that α + 1 is a root.]

Solution Evaluate f(x) at α + 1:

f(α + 1) = (α + 1)p − (α + 1) + 3
= αp + 1p − (α + 1) + 3
= αp − α + 3
= 0,

since we assumed that α is a root, so α + 1 is a root. By induction, α +
2, α + 3, . . . are also roots.

Hence, the roots are α, α + 1, . . . , α + (p− 1). Since the characteristic of F
is p, they are distinct.

Problem 4 b) Without actually computing, find the number of monic irre-
ducible polynomials of degree 2 over the field Z7 = GF (7).

24



Solution The number of monic polynomials of degree 2 over Z7 is 72 = 49.

The number of monic polynomials with two distinct roots are
(
7
2

)
= 21.

The number of monic polynomials with two equal roots are 7.

The number of monic irreducible polynomials are then 49− 21− 7 = 21.

Problem 5 Prove that
√

2 + 3
√

3 is irrational. [HINT: Consider Q(
√

2) and
Q( 3
√

3).]

Solution Assume
√

2+ 3
√

3 = a ∈ Q. Then Q(
√

2) = Q( 3
√

3) is an extension
to Q. This is already a contradiction, since

[Q(
√

2) : Q] = 2

[Q( 3
√

3) : Q] = 3.

This problem can also be solved using the same technique as used when
proving that

√
2 is irrational.

8 Problemset 6 (Exam 2006)

Problem 1 Let f(x) ∈ F [x] be an irreducible polynomial over the field F ,
where F has characteristic 0. Let E be the splitting field over F , and assume
that the Galois group G = G(E|F ) is abelian.

Show that every root α of f(x) is a primitive element, ie. E = F (α).

Solution We have that

E = F (α1, α2, · · · , αn).

since E is the splitting field of f(x) over F . To show that

E = F (α)

for an α ∈ E, we must show that

id = G(E|E) = G(E|F (α)).

Equivalently, we must show that if σ ∈ G(E|F (α)), then σ = id. We have

σ ∈ G(E|F (α)) ⇔ σ(α) = α.

A basis of F (α) is
α, α2, · · · .
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If α is fixed, every element in F (α) is fixed. [If α is fixed, so is α2, α3, · · · .]
We have

σ = id ⇔ σ(αi) = αi.

for i = 1, 2, · · · , n. Another «basis» is ak1
1 , · · · , akn

n . We have

H = G(E|F (α)) = {σ ∈ G(E|F )|σ(α) = α}.

We want to show that

H = {id} ⇔ σ(αi) = αi

for i = 1, 2, · · · , n. There exists σi ∈ G(E|F ) such that σi(α) = αi, since
f(x) is irreducible. Let

Hi = {σ ∈ G(E|F )|σ(αi) = αi}.

We claim that Hi = σiHσ−1
i . (Which is also equal to H, since G(E|F ) is

abelian.) If we can show this identity, then σ ∈ H implies σ(αi) = α, for
i = 1, 2, · · · , n and hence σ = id.

τ ∈ σiHσ−1
i

τ = σiσσ−1 for a σ ∈ H.

τ(αi) = σiσσ−1
i (αi)

= σiσ(α)
= σi(α) = αi.

Hence τ ∈ Hi. Hi ⊇ τσiHσ−1
i . The other way: τ ∈ Hi:

σ−1
i τσi(α) = σ−1

i τ(αi)

= σ−1
i (αi)

= α.

This implies
σ−1

i τσi ∈ H,

which in turn implies

σi(σ−1
i τσi)σ−1

i = σiHσ−1
i = τ.

Simpler solution E/F (α)/F . F (α) is a normal extension to F , since
G(E|F ) is abelian. All subgroups of G(E|F ) are normal. f(x) irreducible in
F [x] ⇒ all roots of f(x) lie in F (α). Hence F (α) = E.
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Problem 2 Show that the diophantic equation y2 + 2 = z4 has no solutions
in Z.

[Hint: Z[
√
−2] is a unique factorization domain.]

Intended solution We have that

y2 + 2 = (y +
√
−2)(y −

√
−2) = z4

must lead to the fact that y is odd. If y is even, then LS and HS can never
be equal modulo 4. We need to show that

gcd((y +
√
−2)(y −

√
−2)) = 1.

Units in Z[
√
−2] are ±1. We have that a + b

√
−2|y +

√
−2, y −

√
−2 leads

to

a + b
√
−2|2y (sum)

a + b
√
−2|2

√
−2 (difference).

Take the norm (N(a + b
√
−2) = a2 + 2b2) on both sides and get

a2 + 2b2|4y2

a2 + 2b2|8

which implies that a2 + 2b2|4. All possible a, b satisfying this:

a = ±1, b = 0
a = 0, b = ±1
a = ±2, b = 0.

Try all those combinations, and plug them into a+b
√
−2|y+

√
−2, y−

√
−2,

and we see that a = ±1, b = 0 is the only solution.

y +
√
−2 = (c + d

√
−2)4(d 6= 0).

We get
1 = 4c3d− 8cd3 = 4cd(c2 + 2d2).

or real number=complex number if d = 0 or c = 0. So with c 6= 0, d 6= 0 we
get a contradiction. Hence the equation has no solutions in Z. It’s easier to
use square than power of 4.

Easier solution Let h = z2 and rewrite to y2 + 2 = h2. Then

y < h or
1 + y ≤ h.
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Square and get

1 + 2y + y2 ≤ h2 or

2y + y2 < h2

or y2 +2 < h2 if y ≥ 1 (since y2 +2 ≤ y2 +2y < h2). This is a contradiction
to the assumption that there exists h, y ∈ Z such that y2 + 2 = h2.

Another easy solution −2 = (y−h)(y +h), brute force on h, y and arrive
at a contradiction:

One of y − h and y + h must be ±1, the other must be ∓2 (both must have
different signs). Then we get

y − h + y + h = 2y = ±1,

and y = ±1
2 , which is absurd, since we were seeking a solution in Z.

Super-easy solution For any x, x2 ≡ 0 or 1 (mod 4). For even x = 2n,
x2 = 4n2 ≡ 0 (mod 4). For odd x = 2n + 1, x2 = 4n2 + 4n + 1 ≡ 1 (mod 4).
We get

y2 + 2 ≡ 2, 3 (mod 4)

h2 ≡ 0, 1 (mod 4),

so y2 + 2 = h2 can never be true.

Problem 3 Let F be a field of characteristic p, where p is a prime number.
Let f(x) ∈ F [x] be an irreducible polynomial with multiple roots. Show that
there exist s ∈ {1, 2, 3, . . .} and an irreducible and separable polynomial such
that f(x) = g(xps

).

Solution Use corollary 16.3.5. There exists h1(x) ∈ F [x] such that if f(x) =
h1(xp), h1(y) has to be irreducible. If h1(y) is not separable, use corollary
16.3.5 again. h1(y) = h2(yp). h2(z) ∈ F [z] is irreducible. deg(f(x)) >
deg(h1(y)) > deg(h2(z)). There must exist hs(x) which is separable.

f(x) = h1(xp) = h2(xp2
) = · · · = hs(xps

).

g(x) = hs(x) is the polyniomial we seek.

Problem 4 a) Let K be a Galois extension of F . Let g(x) ∈ K[x] be
irreducible over K, and let σ ∈ G(K|F ).

Show that σ(g(x)) ∈ K[x] is irreducible over K.

Solution Assume that σ(g(x)) = g1(x)g2(x). Then,

g(x) = σ−1(g1(x))σ−1(g2(x)).
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Since deg(gi(x)) = deg(σ−1(gi(x))), then σ(g(x)) is reducible if and only if
g(x) is reducible. Since g(x) is irreducible, it follows that σ(g(x)) is irre-
ducible.

Problem 4 b) Let f(x) ∈ F [x] be a (monic) irreducible polynomial over F
of degree p, where p is a prime number. Show that if f(x) is reducible in
K[x], then all the roots of f(x) will lie in K. [F and K are as defined in a).]

Solution Let f(x) = f1(x)f2(x) · · · fk(x) be the unique factorization of f(x)
into monic polynomials in K[x]. Let G = G(K|F ) and let σ ∈ G. Because
of unique factorization, σ(fi(x)) will be equal to some fj(x) for every i ∈
{1, 2, · · · , k}. With suitable renumbering, we can assume that

{σ(f1(x))|σ ∈ G} = {f1(x), f2(x), · · · , fl(x)}, l ≤ k.

Let i ∈ {1, 2, · · · , l} and let σi ∈ G such that σi(f1(x)) = fi(x). Then,

{σ(fi(x))|σ ∈ G} = {σσi(f1(x))|σ ∈ G}
= {σ(fi(x))|σ ∈ G}
= {f1(x), f2(x), · · · , fl(x)}.

Hence G will act transitively on {f1(x), f2(x), · · · , fl(x)}, ie. permute them
transitively. Also, σ(g(x)) = g(x) for all σ ∈ G, where

g(x) = f1(x)f2(x) · · · fl(x).

But then g(x) ∈ F [x], and since f(x) ∈ F [x] is irreducible in F [x], we must
have that g(x) = f(x), and therefore l = k. Hence f1(x), f2(x), · · · , fk(x)
must have the same degree r (since fi(x) = σi(f1(x)) for a σi ∈ G), and
hence we must have that k · r = p. But then we must have that r = 1 (since
we know that 1 ≤ r < p, since it’s assumed that f(x) is reducible in K[x].
Hence, all fi(x) are linear and hence all the roots of f(x) lie in K. �

Problem 5 Let f(x) = x3 − 21x + 6 ∈ Q[x], and let E be the splitting field
of f(x) over Q. It can be shown that E ⊂ R. Show that E is not a radical
tower over Q.

Solution
E
...

F1(α2)
| xn2 − b ∈ F1[x] α2 = n2

√
b

Q(α1) = F1

| xn1 − a ∈ Fo[x] α1 = n1
√

a
Q = F0
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In general,

E = Fk(αk+1)
| αk is a root of xnk − c ∈ Fk[x]

Fk = Fk−1(αk)
.

xnk+1 − c = 0 has the roots αk+1, ωαk+1, ω
2αk+1, · · · , ωnk+1αk+1. where

ω = e
2π

nk+1 . Remember that E is normal over Fk(αk−1). Assume there exists
such a radical tower from Q to E. [incomplete sentence in my notes] [If
xnk+1 − c is] the minimal polynomial of αk+1 over Fk, then all the roots of
that polynomial must lie in E, a contradiction.

In other words, we can’t avoid complex values in the tower, therefore we
can’t have E ⊂ R when E is a radical tower over Q.

Problem 42 State the definition of a radical tower.

9 Other problems

Midterm 2006 problem 4 Let E/K/F be field extensions. Assume that
K is algebraic over F , and E is algebraic over K. Show that E is algebraic
over F .

Solution [Fraleigh] Let α ∈ K. We must show that α is algebraic over F .
Because K is algebraic over E, α is a root of some polynomial a0+a1x+· · ·+
anxn ∈ E[x]. Because E is algebraic over F , the ai’s are algebraic over F .
Hence F (a0, a1, · · · , an) is an extension of F of some finite degree m (theorem
F31.11). Since α is algebraic over E of degree r ≤ n, the multiplication rule
shows that F (a0, a1, · · · , an, α) is a finite extension of F of degree ≤ mr.
Theorem F31.3 says that all finite field extensions are algebraic, hence α is
algebraic over F , hence E is algebraic over F .

10 Alphabetic encyclopædia of definitions

Algebraic (element), let E be an extension of F . An element α ∈ E is
algebraic over F is there exists a non-constant polynomial p(x) ∈ F [x] such
that p(α) = 0.

Algebraic (extension), an extension field E over F is called algebraic if
each element of E is algebraic over F . That is, for each element α ∈ E there
exists a non-constant polynomial p(x) ∈ F [x] such that p(α) = 0.

Cyclotomic polynomial, the nth cyclotomic polynomial is the monic poly-
nomial φn(x) =

∏
ω x− ω, the product over all primitive nth roots of unity
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(ω = e2πi/n. For p prime, φp(x) = xp−1 + xp−2 + · · · + x + 1 = xp−1
x−1 .

This can be intuitively explained like this: We seek a polynomial where
the roots are all the primitive nth roots of unity, except 1. The equation
xp = 1 ⇒ xp − 1 = 0 almost satisfies this, then we divide by x− 1 to get rid
of the factor representing a root of 1. For p prime, φp(x) is also the minimum
polynomial of ω = e2πi/p over Q.

Euclidean domain, a commutative integral domain E with unity is called
a Euclidean domain if there exists a function φ : E → Z satisfying the
following axioms:

1. If a, b ∈ E∗ = E − {0} and b|a, then φ(b) ≤ φ(a).

2. For each pair of elements a, b ∈ E, b 6= 0, there exist elements q and r
in E such that a = bq + r, with φ(r) < φ(b).

Frobenius automorphism (endomorphism), let F be a field with pn

elements. The automorphism φ : F 7→ F , given by φ(x) = xp is called the
Frobenius automorphism. Generated by φ, the automorphisms form a cyclic
group of order n.

Galois extension, an extension E of F that is finite, normal and separable.

Galois field, GF (pn) is the finite field with pn elements, and it’s also called
a Galois field.

Irreducible (element), a non-zero element a of an integral domain R with
unity is called an irreducible element if it is not a unit and every divisor of
a is improper, that is, if a = bc, b, c ∈ R, then either b or c is a unit.

Norm, the norm on a ring Z[
√

D] is defined by:

N(a + b
√

D) def=
∣∣∣(a + b

√
D)(a− b

√
D)

∣∣∣ =
∣∣a2 −Db2

∣∣
It satisfies the following:

1. N(x) ∈ N = {1, 2, 3, · · · } if x 6= 0, N(0) = 0.

2. N(xy) = N(x)N(y).

3. N(x) = 1 ⇔ x is a unit in Z[
√

D].

Normal, normal extension, an extension E of a field F is called normal
if every irreducible polynomial in F [x] that has a root in E splits into linear
factors in E. See theorem 16.2.1 for two more equivalent conditions. An
extension E of a field F is called a normal extension if E is the splitting field
of a family of polynomials (could be just one polynomial) in F [x].

Perfect field is a field where all finite (or equivalently, all algebraic) exten-
sions are separable.

31



Prime (element), if p is a non-zero non-unit, p is a prime element if,
whenever p divides a product ab, then p divides a or p divides b.

Prime (field), a field is called prime if it has no proper subfield.

Primitive (element), let E be an extention of a field F . an element α ∈ E
is a primitive element if it generates the extension, that is, E = F (α).

Separable (element), let E be an extension of a field F . An element α ∈ E
that is algebraic over F is called separable over F if its minimal polynomial
over F is separable.

Separable (extension), an algebraic extension E of a field F is called a
separable extension if each element of E is separable over F .

Separable (polynomial), an irreducible polynomial f(x) ∈ F [x] is called
a separable polynomial if all its roots are simple (ie. all roots are distinct).

Simple (extension), let E be an extension of a field F . E is a simple
extension if it is generated by the adjunction of a single element α, that is,
E = F (α).

Simple (root), a root of a polynomial is simple if the multiplicity of that
root is 1.

Splitting field, a splitting field of a polynomial f(x) ∈ F [x] is a field
extension E over F over which f(x) factorizes into linear factors.

Example 1 The splitting field of f(x) = x2 − 2 over Q is Q(
√

2) .

Example 2 The splitting field of f(x) = x3 − 2 over Q is Q(ω, 3
√

2), where
ω = e

2πi
3 .

Example 3 The splitting field of f(x) = x2 + 1 over R is R(
√
−1) = C.

Transitive action (on {1, 2, · · · , n}), let G = G(E|F ) be a Galois group.
Given i, j ∈ {1, 2, · · · , n}, G acts transitively on {α1, · · · αn}, if there exists
σ such that σ(αi) = αj .

11 Theorems

Theorem 11.2.1 Every PID is a UFD, but a UFD is not necessarily a PID.

Theorem 11.3.2 Every Euclidean domain is a PID.

Theorem 11.3.3 Every Euclidean domain is a UFD.

Proof Follows from applying theorem 11.3.2, then 11.2.1. �
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Lemma 15.1.5 (Gauss’ lemma) Let f(x) ∈ Z[x] be primitive. Then f(x)
is reducible over Q is and only if f(x) is reducible over Z.

Lemma 15.1.6 If f(x) ∈ Z[x] is reducible over Q, then it is also reducible
over Z.

Theorem 15.1.7 Let f(x) = xn + an−1x
n−1 + · · · + a1x + a0 ∈ Z[x] be a

monic polynomial. If f(x) has a root a ∈ Q, then a ∈ Z and a|a0.

Theorem 15.1.8 (Eistenstein’s criterion) Let f(x) = a0 + a1x + · · · +
anxn ∈ Z[x], n ≥ 1. If there is a prime p such that p2 6| a0, p|a0, p|a1, · · · , p|an−1, p 6|
an, then f(x) is irreducible over Q.

Example 1 f(x) = xn − p ∈ Q[x] is irredicuble using prime p.

Theorem 16.2.1 Let E be an algebraic extension of a field F contained in
an algebraic closure F̄ of F . Then the following conditions are equivalent.

(i) Every irreducible polynomial in F [x] that has a root in E splits into
linear factors in E.

(ii) E is the splitting field of a family of polynomials in F [x].

(iii) Every embedding α of E in F̄ that keeps each element of F fixed maps
E onto E. (In other words, σ may be regarded as an automorphism of
E.)

Theorem 16.3.3 Let f(x) ∈ F [x] (F field) be a polynomial of degree ≥ 1
with α as a root. Then α is a multiple root if and only if f ′(α) = 0.

Proof By the division algorithm and by the assumption that α is a root of
f(x), we can write f(x) = (x − α)g(x). Then f ′(x) = (x − α)g′(x) + g(x).
Clearly, α is a multiple root of f(x) if and only if g(α) = 0. Because f ′(α) =
g(α), the theorem follows.

Corollary 16.3.5 Any irreducible polynomial f(x) over a field of charac-
teristic 0 has simple roots. Also any irreducible polynomial f(x) over a
field F of characteristic p 6= 0 has multiple roots if and only if there exists
g(x) ∈ F [x] such that

f(x) = g(xp).

Theorem 16.4.1 The prime field (field which has no proper subfields) of a
field F is either isomorphic to Q or to Zp, p prime.

Theorem 16.4.2 Let F be a finite field. Then:

(i) The characteristic of F is a prime number p and F contains a subfield
Fp = Zp.

(ii) The number of elements of F is pn for some positive integer n.
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Theorem 16.4.3 Any finite field F with pn elements is the splitting field
of xpn − x ∈ Fp[x]. Consequently, any two finite fields with pn elements are
isomorphic.

Theorem 16.4.6 The multiplicative group of nonzero elements of a finite
group is cyclic.

Corollary 16.4.7 Let E be a finite extension of a finite field F . Then
E = F (α) for some α ∈ E.

Theorem 16.4.8 Let F be a finite field. Then there exists an irreducible
polynomial of any given degree n over F .

Theorem 16.5.2 If E is a finite separable extension of a field F , then E
is a simple extension of F . We recall that a E is a simple extension of F if
E = F (α) for some α ∈ E. We also recall that E is a separable extension of
F if the minimal polynomial of each element of E over F has distinct roots.

Theorem (Sylow theorem 1) Let G be a finite group, and let p be a prime
number. If pm divides |G|, then G has a subgroup of order pm.

Remark This theorem is included here, since it is used in one of the exam
solutions (until someone finds an alternate solution).

Theorem 42 If a polynomial f(x) ∈ R[x] has odd degree, then f(x) = 0
has a root in R.

Proof Let deg(f(x)) = n. If an > 0, we have

lim
x→−∞

f(x) = −∞

and
lim

x→∞
f(x) = ∞.

If an < 0, it’s the other way around. f(x) = 0 then has a root in R because
of the intermediate value theorem. It is left as a boring exercise to the reader
to prove that f(x) is continuous on the interval (−∞,∞).
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